The Integration of Mineralogical, Geochemical and Physical Rock Properties 
Applied to the Exploration of Large Hypogene Zinc Silicate Deposits: A Case 
Study of the Vazante Zinc Deposits, Minas Gerais, Brazil

A. McGladrey¹, G. Olivo¹, A.M. Silva², G.D. Oliveira³, B. Botura-Neto³ 
¹Department of Geological Sciences and Engineering, Queen’s University, Kingston, ON, 
Canada; ²Instituto de Geociências - Universidade de Brasília, Brasília, DF, Brazil; ³Votorantim 
Metals, Vazante, Minas Gerais, Brazil

Abstract

Exploration for large zinc silicate deposits is more challenging than zinc sulfide 
deposits, as they do not exhibit similar geophysical anomalies. The Vazante deposit, is 
the world’s largest zinc silicate deposit, occurring in brecciated dolomite composed of 
mainly willemite with various proportions of hematite, and minor franklinite and 
sphalerite. In the Vazante region, the exploration challenge is enhanced as outcrops are 
rare, bedrock generally sits below 10s of metres of laterite cover and barren hematite-
rich breccias have a similar geophysical signature to willemite ore bodies. In order to 
evaluate the applications of geophysical surveys in the exploration of this type of 
deposit, data from 475 samples was investigated from drill holes representative of the 
various types of ore, host rocks and zones of known geophysical anomalies in the 
Vazante District. Geochemical (ICP-MS and XRF) and mineralogical (optical, EMPA, 
SEM and MLA) data were integrated with physical rock properties (density, magnetic 
susceptibility and K-U-Th gamma ray spectrometry) to assist in finding new ore zones. 
The most distinct physical property of the ore is density (3.0-4.3 g/cm3), compared 
with the host rocks (2.7-3.0 g/cm3). This is due to high proportion of denser minerals 
(hematite and willemite) in the ore. However, barren hematite breccias also have high 
densities (3.0-4.5 g/cm3). The zinc ore and hematite breccias yielded higher magnetic 
susceptibilities (0.1-38 x10-3 SI) than the surrounding host rocks, with the highest 
values associated with greater proportions of franklinite and magnetite (7-38 x10-3 SI). 
Zinc ore has elevated U concentrations (up to 33ppm) relative to the various host rocks 
(1-7 ppm), yielding higher gamma spectrometric values. The results of this 
investigation indicates that an integration of magnetic, gravimetric and radiometric 
surveys would be required to identify zinc silicate ore zones and potentially 
differentiate them from barren hematite breccias and host rocks.