
NSERC-CMIC Mineral Exploration Footprints Project Contribution 049.
Footprint of the Canadian Malartic Gold Deposit, QC, Canada: Preliminary Evaluation of Mafic Dyke Alteration

Stéphane Perrouty, Robert L Linnen
Western University, Earth Sciences, 1151 Richmond Street, London, ON, N6A 5B7, Canada, sperrout@uwwo.ca

Philip Lypczewski, Nicolas Gaillard, Gema R Olivo, C Michael Lesher, Nicolas Piette-Lauzière, Matt Crocker, Steve Piercey, Najib El Goumi, Randy Enkin
University of Alberta, Edmonton; McGill University, Montréal; Queen’s University, Kingston; Laurentian University, Sudbury; Université Laval, Québec; Memorial University, St John’s; Geological Survey of Canada, Sidney

François Bouchard
Canadian Malartic Corporation, 100, chemin du Lac Mourier, Malartic, Québec, J0Y 1Z0

Abstract. The Pontiac Group meta-sedimentary rocks that host the Canadian Malartic gold deposit were intruded by numerous mafic dykes before the mineralization event(s). The mafic rocks were more reactive to hydrothermal fluids than the Pontiac sediments, which allows for a better characterization of fluid-rock interactions. A preliminary alteration halo of the Canadian Malartic deposit has been interpreted based on the alteration of the mafic dykes. Mineralogy evolves progressively from a distal amphibole-rich assemblage to a proximal (< 0.3 km) amphibole-biotite-quartz-chlorite-pyrite-carbonate mineral association. Petrophysical properties and geochemical signatures co-vary with the mineralogical observations and indicate a decrease in density (silica and carbonate alteration) and an increase in K2O (potassic alteration) with decreasing distance from the deposit. Mineralogical, geochemical, petrophysical, and hyperspectral data aid in distinguishing the alteration features (e.g., potassic alteration) and provide a combination of tools that can be used to define the alteration halos of similar systems.

Keywords. Deposit footprints, Distal alteration, Gold

1 Introduction

The Canadian Malartic gold deposit (over 14 Moz, past production and current resources; Helt et al. 2014) is located in the Abitibi Subprovince of the Superior Craton (Fig. 1). It is hosted mainly by metamorphosed sediments of the Pontiac Group, on the south side of the gold-rich Cadillac – Larder Lake fault system.

The alteration halo of this world-class epigenetic deposit is currently being investigated by the NSERC-CMIC Multidisciplinary Mineral Exploration Footprints project (http://cmic-footprints.ca/), which is using geological-structural-lithogeochemical-mineralogical-petrophysical-geophysical datasets to characterize the distal footprint of this deposit, to identify new exploration criteria, and to develop exploration methodologies.

The purpose of this communication is to report the results of one part of this project, which is aimed at using the degree of alteration of mafic dykes to better define the mineralization-related alteration halo.

2 Geological Setting

Gold mineralization at the Canadian Malartic mine was first described by Derry (1939) and Gunning and Ambrose (1940). Pontiac Group meta-sedimentary rocks, mafic dykes, and monzodiorite intrusions are the main host rocks, and have undergone potassic, pyritic, silica, and carbonate alterations during mineralization.

Derry (1939) reported two major structural fabrics in the area: an E-W to NE-SW trending S1, and an NW-SE trending S2 defined by biotite. The main mineralizing event is thought to have occurred during D2 deformation (Derry 1939).

Subsequent studies by Sansfaçon et al. (1987), Fallara et al. (2000), and the TGI4 program have refined Derry’s geological model. Helt et al. (2014) investigated alteration assemblages and fluid compositions and proposed that Canadian Malartic may represent a new type of intrusion-related gold deposit.

Figure 1. Map of the Superior Craton (outlined here from airborne magnetic datasets) showing the location of the Canadian Malartic gold deposit in the Québec part of the Abitibi Subprovince.

3 Methodology and Results

Numerous mafic dykes intruded the Pontiac Group sedimentary rock and the monzodiorites before the mineralization event. They are folded by F2, display a biotite-actinolite S2 cleavage, and have been affected by mineralization-related alterations. The mafic dykes are also present within the Piché Group, north of the Pontiac Group, where they intruded ultramafic rocks (Derry 1939).
petrophysical data aid in distinguishing the alteration features and provide a combination of tools that can be used to define and target the alteration halos of similar systems.

Acknowledgements
The research team is grateful to the Canadian Malartic Corporation exploration and production departments for their logistic support during field work. We also wish to thank ACTLABS, ALS and SGS for providing XRD and lithogeochemical data. Funding through CMIC and the NSERC CRD program is gratefully acknowledged.

CMIC-NSERC Exploration Footprints Network Contribution 046.

References
Gunning HC, Ambrose JW (1940) Malartic Area, Québec, Geological Survey, Memoir 222, 151 p

Figure 2. Geological map of the Canadian Malartic area (based on airborne geophysical surveys and outcrop database from Derry 1939; Gunning and Ambrose 1940; Sansfaçon et al. 1987; Fallara et al. 2000; unpublished data from Canadian Malartic Corporation; and data from this study). Black dots show the location of mafic dyke samples and the red line represents the outline of the Canadian Malartic mine.

Competency and chemical contrasts between the mafic dykes and their host rock affect gold distribution. Gold grades are higher in the vicinity of mafic dykes within the Piché Group, as they are more competent than ultramafic rocks, but gold grades are not significantly higher in the mafic dykes within the Pontiac Group (Derry 1939), as they are less competent than metasedimentary rocks. However, the mafic rocks are more reactive to the hydrothermal fluids than the Pontiac sediments (greywacke, siltstone and mudstone), and may therefore be better able to characterize the fluid-rock interactions from the proximal (ore zones) to the distal parts (footprint) of the ore system.

In this work, the mineralogy, whole rock geochemistry and petrophysical attributes of 96 mafic dykes from outcrops and drillcore have been determined over a 280 km² area around the deposit (Fig. 2).

3.1 Mineralogy
The mineralogy of the mafic dykes was investigated by thin-section analysis and by XRD. Mineralogy evolves progressively from a distal amphibole-rich assemblage to a proximal biotite-carbonate-quartz-chlorite-pyrite mineral association. Hyperspectral analyses (shortwave infrared, SWIR, and thermal infrared, TIR) of drill core and outcrop samples indicate that this method can be used to identify these changes in mineralogy.

3.2 Whole Rock Geochemistry
Portable-XRF data and conventional lab-based whole-rock geochemical data (XRF, Na₂O₂ fusion + ICP, Aquaregia + ICP) have been acquired on the same samples, and define a whole-rock geochemical halo that corresponds to the mineralogical halo. For example the K₂O content of the mafic dykes increase toward the gold deposit, which is consistent with potassic alteration being associated with gold mineralization (Derry 1939).

3.3 Petrophysics
Petrophysical properties were measured on the same samples that were used for mineralogical and geochemical investigations. Densities decrease toward the gold deposit, which corresponds with silica and carbonate alteration.

4 Discussion and Final Remarks
A preliminary alteration halo of the Canadian Malartic deposit has been defined based on mineralogical, geochemical, and petrophysical characteristics.

Not only are the dykes more susceptible to mineralization-related alteration, they also define critical relationships between magmatism, deformation, hydrothermal alteration, and gold mineralization.

Hyperspectral, mineralogical, geochemical, and
petrophysical data aid in distinguishing the alteration features and provide a combination of tools that can be used to define and target the alteration halos of similar systems.

Acknowledgements

The research team is grateful to the Canadian Malartic Corporation exploration and production departments for their logistic support during field work. We also wish to thank ACTLABS, ALS and SGS for providing XRD and lithogeochemical data. Funding through CMIC and the NSERC CRD program is gratefully acknowledged. CMIC-NSERC Exploration Footprints Network Contribution 046.

References

Gunning HC, Ambrose JW (1940) Malartic Area, Québec, Geological Survey, Memoir 222, 151 p
Abstract. In 2008, high-grade gold-uranium mineralization was discovered in the Rompas area, northern Finland. This was closely followed in 2010 by the discovery of gold mineralization at Rajapalot, approximately 8 km east of Rompas. They are located in the northern part of the Paleoproterozoic Peräpohja Belt, near to the bordering Central Lapland Granitoid Complex. This study represents preliminary results of petrographic and mineral chemical studies of the Rajapalot disseminated-style gold mineralization. Research done to date has revealed that gold is associated with a Ca-poor cordierite-anthophyllite rock unit interlayered with calcsilicate rock. The Ca-poor unit is composed mainly of Fe-Mg-Mn ortho- and clino-amphiboles and cordierite and was affected by intense sulfidization, chloritization and tourmalinization. Gold occurs in a native form, with grains varying from <1 micron to 20 microns across, and is associated with Se-bearing tetradymite and chalcopyrite in fractures, along grain boundaries of pyrrhotite and in association with plagioclase and amphiboles. High gold contents have also been discovered in tourmalinite veins containing ca. 80% of dravitic tourmaline and 20% of sulfides.

Keywords. Gold, Peräpohja Schist Belt, Paleoproterozoic, anthophyllite-cordierite rock

1 Introduction

The Palaeoproterozoic supracrustal belts in northern Finland have turned out to be favorable geological units for prospecting for orogenic gold deposits (Eilu et al. in press). Most of them have been regarded as belonging to the orogenic gold type though some are showing an anomalous metal association, including high uranium contents and their genetic type is still ambiguous (op. cit). These include the high-grade Au-U and Au occurrences that were discovered in the Rompas and Rajapalot areas, the Peräpohja Belt, in 2008 and 2012, respectively, northern Finland. Mawson Resources Ltd. has been exploring the area since 2010. Approximately 300 surficial samples with bonanza-grade gold have been collected from the Rompas area and highlights from drilling include 6 meters with a grade of 617 g/t Au (Vanhanen et al., in press). Highlights of the shallow near surface drilling done from the type locality of the Rajapalot disseminated gold includes i.e. 19.5 meters at 7.4 g/t, 5.4 meters at 37.6 g/t Au. More information about the drilling results can be found in the Mawson Resources web pages. This reports preliminary results from petrographic and mineral chemical studies from the Rajapalot disseminated style gold mineralization.

2 Geological background

The Peräpohja Belt comprises a volcano-sedimentary sequence with a ca. 500 Ma depositional history between ca. 2.44 Ga and 1.92 Ga. Supracrustal units are intruded by granitoid intrusions at least in three stages, ca. 1.98, 1.89-1.88 and 1.77-1.79 Ga (Ranta et al. in prep). The rocks have gone through polyphase deformation. They are metamorphosed under greenschist facies conditions in the southern parts of the belt. The metamorphic grade is higher in the northern and eastern parts, where amphibolite facies conditions prevail. Close to the contact to the bordering Central Lapland Granitoid Complex, rocks are locally migmatized. Owing to the intense polyphase deformation and alteration and higher metamorphic grade compared to the southern part of belt, stratigraphic relationships in the northern part remain unresolved.

3 Gold mineralization

The Rompas Au-U and Rajapalot Au occurrences are located at the northern edge of the Peräpohja Belt, close to the contact to the Central Lapland Granitoid Complex. The Rompas mineralization is composed of fracture-hosted native gold, sulfarsenides, uraninite and pyrobitumen associated with quartz-carbonate-calcsilicate veins in metabasaltic rocks (Vanhanen et al. in press). The rock types in the Rajapalot area are mostly represented by altered quartzites, carbonate bearing rocks and amphibolites potential of volcanic origin. The prospect is formed by a disseminated-style gold mineralization associated with intense hydro-thermal alteration, with native gold occurring in highly sulfidized and metasomatized rocks. These Rompas and Rajapalot occurrences are located ca. 8 km apart from each other. On-going research at Rajapalot is focused on alteration characterization in the proximal mineralization as well as the surrounding rocks in the area.