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Introduction

Porphyry Cu deposits are the primary source of Cu globally

and, although demand ebbs and flows and recycling is in-

creasing, a pipeline of quality projects and resources is

needed to replace decreasing inventories (Seedorff et al.,

2005; Sillitoe, 2010; Thompson, 2016). Exploration costs

and expenditures have increased approximately threefold

during the last 12 years (Wilburn et al., 2015; Wood, 2016),

yet discovery rates are down and very few new deposits

have been found (Sillitoe, 2013). As a result, exploration is

moving into underexplored, high-risk political jurisdic-

tions and beneath cover (systems with no surface expres-

sion) in known productive belts, necessitating more effec-

tive and efficient exploration methodologies and techniques

(Sillitoe, 2013; Schodde, 2014; Wood, 2016).

The volume of hydrothermally altered rocks outboard of

economically significant concentrations of Cu-Fe–sul-

phide minerals is termed the porphyry footprint. An under-

standing of the fluid types that can be present during por-

phyry Cu formation, how they manifest in the footprint and

their spatial distribution with respect to Cu-mineralized

portions of the system is critical to developing better explo-

ration tools. This work is part of the Porphyry Copper Foot-

prints Subproject of the Canada Mining Innovation Council

(CMIC) and Natural Sciences and Engineering Research

Council of Canada (NSERC). Its purpose is to investigate

the petrophysical, structural, mineralogical, geochemical

and isotopic footprints of the porphyry Cu (±Mo) deposits

in the Highland Valley Copper (HVC) district of south-cen-

tral British Columbia (BC; Figure 1). The Teck Highland

Valley Copper Partnership (‘Highland Valley Copper’) is

wholly owned and operated by Teck Resources Limited.

The district contains proven and probable reserves of
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Figure 1. Simplified geology of the Quesnel terrane in southern
British Columbia. Geological data from Massey et al. (2005). Blue
outline indicates the area shown in Figure 2a.



577 200 tonnes at 0.29% Cu and 0.007% Mo (Teck Resour-

ces Limited, 2016).

Four major porphyry Cu (±Mo) systems, hosted in various

intrusive facies of the Late Triassic Guichon batholith, oc-

cur in the HVC district (Figure 2a). Exposure and airborne

magnetic data indicate that the batholith has an oval shape,

elongate to the northwest, with a long axis of approxi-

mately 60 km and a short axis of 25 km. Due to its size and

low degree of exposure (~3%), the HVC district is a realis-

tic natural laboratory in which to investigate the large-scale

footprint of porphyry Cu deposits, integrate disparate geo-

logical and geochemical datasets, and develop new meth-

odologies and genetic understanding to aid modern explor-

ation geoscientists.

Two field seasons of mapping and sample collection have

been completed. Whole-rock lithogeochemistry, represen-

tative rock slabs and thin sections have been processed and

analyzed for mineralogy and paragenesis. McMillan (1976,

1985) described argillic and propylitic alteration at HVC;

however, the district-scale footprint of sodic-calcic (Na-

Ca) alteration had not been recognized in the Guichon

batholith before the current study (Figure 2b). This paper

presents a description of the Na-Ca alteration in the Gui-

chon batholith and outlines the research question concern-

ing its genesis.

Geological Setting

Regional Geology

The Quesnel terrane in the Canadian Cordillera is charac-

terized by Mesozoic island-arc assemblages comprising

volcanic and sedimentary rocks and associated intrusions.

The most important rocks for this study are the Late Trias-

sic Nicola Group and the Guichon batholith (Coney et al.,

1980; Logan and Mihalynuk, 2014). The Nicola Group

consists primarily of andesitic submarine volcanic and as-

sociated volcano-sedimentary rocks of island-arc affinity

(Preto, 1979; Mortimer, 1987; Ray et al., 1996) that were

deposited in a rifted marine basin above an east-dipping

subduction zone (Colpron et al., 2007). The I-type, low-K

tholeiitic to medium-K calcalkalic Guichon batholith (Fig-

ures 1, 2a; Northcote, 1969; McMillan, 1976; D’Angelo,

2016) intruded the ca. 238–202 Ma Nicola Group between

ca. 211 and 204 Ma, prior to docking with ancestral North

America (Logan and Mihalynuk, 2014; Mihalynuk et al.,

2016). The region subsequently underwent Cretaceous

shortening and localized Paleogene–Neogene extensional

deformation (Colpron et al., 2007).

District Geology

Several texturally and compositionally distinct intrusive

facies are recognized in the Guichon batholith (Northcote,

1969; McMillan, 1976; D’Angelo, 2016.). Older marginal

and equigranular mafic rocks transition to younger, cen-

trally located, inequigranular to porphyritic felsic facies

(Figure 2a). A cluster of at least four porphyry Cu deposits,

hosted by the inner intrusive facies, and ~160 additional Cu

showings occur in the HVC district (Figure 2a; McMillan et

al., 2009; Byrne et al., 2013). Two main stages of mineral-

ization are recognized at HVC (McMillan, 1985; Byrne et

al., 2013), and these are separated by ~1 m.y. and intrusion

and crystallization of the most evolved intrusive rocks

(D’Angelo, 2016). A postmineral, north-trending, dextral

strike-slip fault cuts the Valley and Lornex deposits (Fig-

ure 2a). Restoring approximately 3.5 km of dextral move-

ment suggests that the Valley and Lornex deposits were

once a single porphyry centre (Hollister et al., 1976; Mc-

Millan, 1976).

Several features indicate that some of the porphyry centres

at HVC were deeply emplaced. Plutonic hostrocks, horn-

blende bathymetry (D’Angelo, 2016), presence of unidi-

rectional solidification textures and coarse muscovite–

dominated (Byrne et al., 2013) early halo-type (or greisen-

like) veins imply that the Valley-Lornex cupola and por-

phyry Cu system was likely emplaced between 4 and 5 km

deep (Seedorff et al., 2008; Proffett, 2009; Riedell and

Proffett, 2014). A 4–5 km emplacement depth for the Val-

ley-Lornex porphyry system (Figure 3) is also consistent

with stratigraphic-thickness estimates for southern

Quesnel Nicola Group rocks of between 3 and 6 km (Preto,

1979). At depths greater than approximately 4 km, a single-

phase supercritical fluid (of moderate salinity, ~10%)

would likely have been stable, possibly leading to mineral-

ization styles and an alteration footprint that are atypical of

porphyry environments (Rusk et al., 2008; Richards,

2011b; D’Angelo, 2016). The exposure and prevalence of

Na-Ca alteration indicates a deep level of erosion (Figure 3;

Seedorff et al., 2008; Halley et al., 2015).

Sodic-Calcic Footprint and Characteristics

Field mapping of domains of high vein density (>0.5 cm/m)

highlights fluid pathways within the district (Figure 2b).

The Na-Ca facies in the Guichon batholith consists primar-

ily of light green epidote veins with haloes of albite ± fine-

grained white mica ± epidote ± chlorite ± actinolite (Fig-

ures 4, 5). A key characteristic of the Na-Ca facies is the se-

lective replacement of primary K-feldspar by secondary al-

bite ± fine-grained white mica. Within Na-Ca haloes,

primary mafic minerals are replaced by chlorite and local-

ized actinolite, with accessory titanite (Figure 5g). Sodic-

calcic veins and haloes occur in ~0.5–2 km wide, north-

northeast- and northwest-trending domains that extend

along trend from Cu centres for up to 7 km in a nonconcen-

tric pattern (Figure 2b). At the Bethlehem porphyry centre,

Na-Ca alteration is most common at depth beneath biotite-

altered and Cu-mineralized breccias but is exposed at

higher elevations in structurally controlled domains in the

214 Geoscience BC Summary of Activities 2016



Geoscience BC Report 2017-1 215

F
ig

u
re

2
.

a
)

G
e

o
lo

g
y

o
f

th
e

G
u

ic
h

o
n

b
a

th
o

lit
h

(m
o

d
if
ie

d
a

ft
e

r
M

c
M

ill
a

n
e

t
a

l.
[2

0
0

9
],

T
e

c
k

R
e

s
o

u
rc

e
s

L
im

it
e

d
a

n
d

C
a

n
a

d
a

M
in

in
g

In
n

o
v
a

ti
o

n
C

o
u

n
c
il

w
o

rk
in

th
e

d
is

tr
ic

t)
;

a
ls

o
s
h

o
w

n
a

re
a

s
im

p
lif

ie
d

C
u

-o
c
c
u

rr
e

n
c
e

fa
c
ie

s
in

te
rp

re
ta

ti
o

n
b

a
s
e

d
o

n
c
o

m
p

ila
ti
o

n
o

f
p

u
b

lic
-d

o
m

a
in

B
C

a
s
s
e

s
s
m

e
n

t-
re

p
o

rt
d

a
ta

;
th

e
b

lu
e

fr
a

m
e

in
d

ic
a

te
s

th
e

a
re

a
s
h

o
w

n
in

F
ig

-
u

re
2

b
.
b

)
D

is
tr

ib
u

ti
o

n
o

f
N

a
-C

a
a

lt
e

ra
ti
o

n
fa

c
ie

s
in

th
e

G
u

ic
h

o
n

d
is

tr
ic

t,
b

a
s
e

d
o

n
m

a
p

p
e

d
v
e

in
a

n
d

a
lt
e

ra
ti
o

n
-h

a
lo

d
e

n
s
it
y

o
f
g

re
a

te
r
th

a
n

~
5

c
m

/m
;
th

e
‘+

’p
a

tt
e

rn
in

d
ic

a
te

s
m

a
fi
c

ro
c
k
s
,

w
h

e
re

a
s

th
e

c
o

a
rs

e
‘X

’
p
a

tt
e

rn
in

d
ic

a
te

s
th

e
m

o
re

fe
ls

ic
ro

c
k
s

in
th

e
d

is
tr

ic
t.



west and south pit walls. Some isolated do-

mains of Na-Ca facies occur in mafic Bor-

der facies rocks. Individual vein orienta-

tions are similar to the trend of the larger

alteration domains. Outcropping Na-Ca–

altered rocks are typically white and frac-

tured, and contrast with surrounding

wallrock (Figures 4a, b). Isolated veinlets

with narrow haloes, however, are less con-

spicuous (Figure 4c). Epidote veins typi-

cally have an irregular morphology and dif-

fuse walls, and can vary in thickness along

strike and down dip (Figures 4c, d). In all

examples, K-feldspar is altered to albite

within the alteration halo (e.g., Figures 5a–

d), whereas plagioclase appears to be less

susceptible and only albitized within in-

tense alteration haloes (Figure 5e). Alter-

ation haloes typically range in width be-

tween 0.5 and 2 cm but can be up to 1 m

wide on large veins. More pervasive albite

al terat ion, local ly accompanied by

actinolite and relict garnet (mostly retro-

graded to pumpellyite and chlorite) formed

close (150–1000 m) to the porphyry-Cu

centres and stocks (Figures 2b, 4b). In hand

sample, albite haloes are opaque and the

primary twinning and lamellae in igneous

feldspars are absent. In thin section, albite-

altered feldspar is turbid and associated

with coeval, disseminated, fine-grained

(~5–10 ìm) white mica and microporosity

(Figures 5f, g).

Prehnite veinlets (±epidote) with plagioclase-destructive

white mica–prehnite haloes (±chlorite-vermiculite in

hornblende and biotite) constitute the most abundant and

widespread alteration facies in the Guichon batholith. The

K-feldspar is generally stable within prehnite-vein alter-

ation haloes (Figures 5c, d). Initial shortwave-infrared

spectral analysis (TerraSpec 4) of this facies identified a

mixed spectrum of white mica (illite), prehnite and subordi-

nate chlorite. Hyperspectral analysis of rock slabs, com-

pleted by P. Lypaczewski (CMIC Ph.D. student, University

of Alberta), more clearly showed prehnite morphology

(vein-fill and disseminated grains in the halo) in rock slabs,

and its distribution in the HVC district. Prehnite in rock

slabs varies from opaque to light mint-green or dark green

and the mineral is susceptible to amaranth stain after etch-

ing with HF (Figure 5d). In hand sample, plagioclase al-

tered to white mica is typically pale mint-green in colour. In

thin section, small grains (20–100 ìm) of prehnite and

more abundant fine-grained clusters (5–20 ìm) of white

mica occur together in altered plagioclase crystals. Prehnite

veins exhibit a wide range of orientations throughout the

batholith. Prehnite veinlets and their associated white mica–

chlorite alteration commonly refracture and overprint ear-

lier-formed veins and haloes, resulting in complex alter-

ation patterns in hand sample.

Paragenetic Sequence

Most of the Na-Ca alteration appears to have occurred be-

tween the main stages of Cu introduction in the HVC dis-

trict (Figure 6). Sodic-calcic alteration overprinted biotite–

K-feldspar–bornite–chalcocite veins and alteration, and

magmatic-hydrothermal breccia, in the Bethlehem system

(Figure 4e; Byrne et al., 2013). Narrow (0.2–1 cm) K-feld-

spar fracture haloes, with and without trace chalcopyrite

patina, are found up to 4 km away from the Valley-Lornex

and Highmont Cu centres (Lesage et al., 2016). These

early-mineral K-feldspar fracture haloes were overprinted

by Na-Ca veins at most locations. Locally within the High-

mont porphyry Cu centre, however, quartz–chalcopyrite–

K-feldspar veinlets appear to crosscut epidote veins with

albite haloes (Figures 5a, b). Main-stage veins containing

quartz, coarse muscovite and Cu-Fe–sulphide crosscut epi-
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Figure 3. Schematic alteration zonation through the Valley-Lornex porphyry Cu cen-
tre hosted in the Guichon batholith (modified after Halley et al., 2015). Note 1) the
structural control on Na-Ca–alteration facies; 2) the interpreted emplacement depths
and exposure levels of the Valley-Lornex centre (labelled ‘x’) and the shallower Beth-
lehem breccia–hosted porphyry centre (labelled ‘y’); and 3) the exclusion of the alter-
ation at Bethlehem for clarity. Mineral abbreviations: ab, albite; act, actinolite; alu, alu-
nite; bt, biotite; cb, carbonate mineral; chl, chlorite; ep, epidote; ilt, ilmenite; kfs, K-
feldspar; ms, muscovite (coarse grained); prh, prehnite; prl, pyrophyllite; qz, quartz;
sme, smectite; wm, white mica–sericite (fine grained).
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Figure 4. a) Fresh roadcut exposure of Na-Ca alteration in the northeastern part of the batholith. b) Intense albite–white-mica alteration
above the Bethlehem pit; note the highly fractured Na-altered domain compared to the blocky fracture pattern of a late-mineral dike on the
left side of the image. c) and d) Examples of epidote veins with albite haloes hosted in Guichon granodiorite. e) Drillcore from the centre of
the Jersey (Bethlehem) porphyry system, showing biotite veins and alteration, and Cu mineralization overprinted by intense albite and
epidote-albite (hematite stained); the Na-Ca facies is Cu-grade destructive and leaches Fe. f) Premineral quartz and feldspar porphyry
stock at Highmont crosscut by albite-fracture haloes (white coloured), which are in turn cut by coarse muscovite-bornite veins. Mineral ab-
breviations: bn, bornite; bt, biotite; ep, epidote.
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dote veinlets with albite haloes and pervasive albite-altered

rocks (Figure 4f) at Valley-Lornex and Highmont. North

and east of Bethlehem, rare tourmaline veinlets, with and

without haloes of K-feldspar or intense white mica, are

overprinted by epidote veins with albite–white mica haloes

(Figure 5h). Sodic-calcic–altered rocks are crosscut by

prehnite veinlets with plagioclase-destructive white mica

haloes (Figures 5c, d) but still have distinctive major- and

minor-element enrichments and depletions: elevated Na2O,

CaO and Cl; a decrease in K2O and FeO; and high Na/Ba

and Sr/Ba (e.g., Figure 5e).

Discussion

The recognition and study of the Na-Ca alteration assem-

blage is important because

• mapping has shown that large domains of strongly Na-

Ca–metasomatized rocks are along strike of the por-

phyry Cu centres (Figure 2b);

• it locally removed magnetite and hornblende, thus

changing the rock petrophysical properties; and

• where it overprinted Cu mineralization, it is destructive

of the Cu grade.

Isotope and fluid-inclusion studies have shown that mete-

oric (Sheets et al., 1996; Taylor, 1979; Selby et al., 2000),

formational brine (Dilles et al., 1992) and magmatic-de-

rived (Dilles et al., 1992; Harris et al., 2005; Rusk et al.,

2008) fluids of varying salinities can all be present in vari-

ous proportions at different locations and times in an evolv-

ing porphyry system. Additionally, sericite at Koloula and

Waisoi in Papua New Guinea is interpreted to have formed

from seawater in young (1.5–5 Ma) and shallowly em-

placed porphyry systems (Chivas et al., 1984). Similarly,

calculated initial O and D isotopic compositions of coarse

muscovite from the Valley system at HVC suggest mixing

of seawater with high-temperature (370–500°C), Cu-

bearing magmatic fluids (Osatenko and Jones, 1976).

Widespread Na-Ca alteration may be caused by the flow of

external hypersaline formation waters, heated during in-

flow to the magmatic cupola regions along the margins of

potassic alteration (Dilles et al., 1992; Dilles et al., 2000).

Highly oxidized felsic magmas can produce fluids capable

of Na-, Fe-, Ca- or K-rich alteration (Arancibia and Clark,

1996). Similarly, fluids evolved from special alkalic melts

can cause Na metasomatism (Lang et al., 1995). The mag-

matic-derived Na-Ca–alteration examples, however, are

inconsistent with the scale and distribution features of Na-

Ca alteration in the Guichon batholith. Sodium-rich alter-

ation is widely developed in Permian to Jurassic arc igne-

ous rocks of the western United States, where it is attributed

to moderate- to high-salinity fluids of marine, formation

and/or meteoric origin, with or without a magmatic compo-

nent (Battles and Barton, 1995). The hypothesis that will be

tested in this study is that seawater drawn down and inward

along regional structures toward cupola regions caused Na-

Ca alteration during the upwelling of the magmatic-hydro-

thermal fluids that formed the porphyry Cu mineralization.

If this is the case, this process may be more prevalent in

island-arc porphyry systems than previously recognized.

This hypothesis will be tested using a combination of field

and laboratory techniques. First, field maps, feldspar-

stained rock slabs, hyperspectral images and petrography

will be used to establish the Na-Ca facies distribution, min-

eralogy and its paragenesis at HVC. This will be followed

by geochemical characterization by electron microprobe

analysis (EMPA) and laser-ablation inductively coupled

plasma–mass spectrometry (LA-ICP-MS) of the associated

minerals (epidote, albite, actinolite, titanite). Results will

be compared to Na, Ca and Na-Ca assemblages in other

systems: Yerington, Anne-Mason and Royston in Nevada

(Carten, 1986; Dilles and Einaudi, 1992); Sierrita-

Esperanza and Kelvin-Riverside in Arizona (Seedorff et

al., 2008); and Island Copper, Mt. Milligan, Gibraltar and

Woodjam in BC (Arancibia and Clark, 1996; Jago et al.,

2014; Chapman et al., 2015; Kobylinski et al., 2016).

Whole-rock 87Sr/86Sr values of unaltered samples will be

compared to the Sr-isotope composition of strongly Na-

Ca–altered samples to test for shifts from initial HVC mag-

matic compositions of 0.7034 (D’Angelo, 2016) to Triassic

seawater values of ~0.7076 (Tremba et al., 1975). Addi-

tionally, the Sr, O and D isotope compositions of epidote,

albite and actinolite will be measured and evaluated with

respect to magmatic and other fluid-reservoir (e.g., mete-

oric and seawater) compositions. Minerals formed from

magmatic fluids are expected to have initial ä18O and äD

values close to 6‰ and –60‰, respectively (Taylor, 1979),

whereas minerals formed from a fluid with seawater input

may move toward the composition of standard mean ocean

water (SMOW; ~0‰ for both ä18O and äD).
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Figure 5. a) Epidote vein with albite halo in Skeena granodiorite
crosscut by a quartz–K-feldspar–chalcopyrite veinlet. b) Feldspar-
stained image of photo (a); dark yellow indicates K-feldspar and
pink indicates calcic plagioclase; weak pink-stained to white
plagioclase is associated with fine-grained, pale green, white mica
and small grains of prehnite. c) and d) Epidote-quartz vein with K-
feldspar–destructive albite halo crosscut, offset and overprinted by
a prehnite veinlet with strong white mica–prehnite–chlorite halo;
hostrock is Chataway-facies granodiorite. e) Irregular epidote
veins with albite-chlorite haloes in Guichon granodiorite, also
showing lithogeochemical response of the corresponding sample.
f) Photomicrograph of albite- and white mica–altered feldspar and
actinolite-epidote–altered hornblende in Guichon granodiorite;
tourmaline vein fill is crosscut by epidote. g) Back-scattered elec-
tron image of partially actinolite-altered primary hornblende; note
accessory titanite; primary feldspar is altered to albite and contains
numerous disseminated inclusions of white mica and very fine
grained pore space (black). h) Fragments of tourmaline in
compositionally zoned (Fe-Al substitution) epidote. Mineral abbre-
viations: ab, albite; act, actinolite; ccp, chalcopyrite; chl, chlorite;
ep, epidote; fsp, feldspar; hbl, hornblende; kfs, K-feldspar; pl,
plagioclase; prh, prehnite; qz, quartz; ttn, titanite (sphene); tur,
tourmaline; wm, white mica.



Impact of Proposed Work

Porphyry Cu deposits provide the world with most of its Cu

and have likely been the focus of more academic research

than any other class of base-metal deposit. Significant ad-

vances in genetic understanding of porphyry systems, at

various scales, have been made. Exploration tools and

models (e.g., Holliday and Cooke, 2007) applicable to the

exploration geoscientist, however, have not advanced to

the same degree, with a few notable exceptions: fertility

(Richards, 2011a; Loucks, 2014); epidote-vector geochem-

istry (Jago, 2008; Cooke et al., 2014); lateral and vertical

metal zonation (Jones, 1992; Halley et al., 2015);

shortwave-infrared spectroscopy (Thompson et al., 1999;

Halley et al., 2015); and porphyry-indicator minerals

(Averill, 2011).

The research outlined in this paper is designed to test for ev-

idence of nonmagmatic fluid flow around porphyry Cu de-

posits, and how these fluids interacted with and affected

wallrock with increasing distance from the Cu centres. The

nonconcentric distribution of Na-Ca alteration is an impor-

tant modifier to typical alteration-zonation models. Results

from this research have the potential to refine exploration

models and leverage existing datasets, thus leading to more

cost-efficient and successful exploration programs.
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Highmont, respectively. Mineral abbreviations: ab, albite; act, actinolite; anh, anhydrite; bn, bornite;
bt, biotite; ccp, chalcopyrite; chl, chlorite; di, diopside; ep, epidote; grt, garnet; hem/spec, hematite;
kln, kaolinite; kfs, K-feldspar; mol, molybdenite; ms, muscovite (coarse grained); prh, prehnite; py, py-
rite; qz, quartz; sme, smectite; tur, tourmaline; vrm, vermiculite; wm, white mica–sericite (fine
grained).
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