Sundaralingam N, 2017, Vein pyrite composition as a potential vector for defining the Canadian Malartic footprint, BSC Thesis, Western U, ON, 58 p.

NSERC-CMIC Mineral Exploration Footprints Project Contribution 149.

Vein Pyrite Composition as a Potential Vector for Defining the Canadian Malartic Footprint

Neera Sundaralingam
Supervisors: Dr. Robert Linnen and Dr. Stéphane Perrouty

University of Western Ontario
B.Sc. Honours Thesis

Abstract

The main gold mineralization at the Canadian Malartic deposit is associated with disseminated pyrite or fine veinlets, which are related to the D_{2} deformation event. The composition of the pyrite within the syn- D_{2} veins may therefore record broad-scale fluid circulation, which ultimately can provide evidence for the origin of the deposit. This work focuses on the mineralogical and geochemical analysis of the veins and pyrite grains within them to ultimately determine whether pyrite grains define the Canadian Malartic footprint. Of the 2 vein generations recognized, one vein generation formed during D_{2} and 3 sub-types contained pyrite, which were sampled for this study. Twenty-five samples were collected along two main transects leading away from the deposit. Five groups of primary vein mineralogy can be distinguished from petrographic analyses: group 1: Qz-Ab-Kfs-Cal-Bt, group 2: Qz-Ab-Kfs-Bt, group 3: Qz-Ab-Cal-Bt, group 4: Qz-Ab-Bt and group 5: Qtz-Cal-Bt. Vein mineralogy and structural characteristics closely resemble the main ore stage veins and are thus inferred to have formed during main gold mineralization. Along the transect to the south, pyrite is increasingly replaced by pyrrhotite, which can be interpreted as a result of the increasing metamorphic grade toward the south. Oscillatory zoning is observed within the pyrite grains in maps from electron probe microanalyses, which may reflect fluid evolution or fluid mixing. Multiple gold mineralization events may be inferred due to the presence of gold nanoparticles within the pyrite grains as well as within fractures of the grains. As and Au relationships infer that the vein pyrite grains are undersaturated with respect to gold, as the majority of the samples contain structural gold and are generally low in composition. Maximum gold contents within vein pyrite could be used as a weak vector to define the Canadian Malartic footprint as they decrease in gold concentration with increasing distance away from the deposit.

Acknowledgements

I am extremely grateful to my two supervisors, Dr. Robert Linnen and Dr. Stéphane Perrouty for their constant guidance and support during this project. Thank you both for providing me with advice and constructive criticism.

I would especially like to thank the members of the NSERC-CMIC Footprints project for giving me this opportunity to contribute to the project, including Cathryn Nadjiwon, Michael Lesher, Mark Hannington and Alan Galley.

I am grateful to the sponsors of the NSERC-CMIC Footprints project for supporting this project including Canadian Malartic. Thanks to François Bouchard and Marc Bardoux for their constructive comments.

Special thanks goes to Nicolas Piette-Lauzière and Nicolas Gaillard for their advices and feedback on this project as well.

I would also like to thank Marc Beauchamp at the University of Western Ontario for his help during EPMA analysis as well as Jean Claude Barrette at the University of Windsor for his assistance during LA ICP-MS analysis. Special thanks goes to Melissa Price and Iain Samson at the University of Windsor, for assisting me with Igor Pro and Iolite.

Lastly, I would like thank those who supported me during this entire project, including Marie Schell, my friends and of course, my family.
Table of Contents
1 Introduction 1
1.1 Background 1
1.2 Objectives and Scope 1
2 Tectonic Settings 3
2.1 Regional Geology 3
2.1.1 The Abitibi Subprovince. 3
2.1.2 The Cadillac-Larder Lake Deformation Zone 3
2.1.3 The Pontiac Subprovince and Felsic Intrusions 4
2.1.4 Lithostratographic Division of the Region 4
2.1.5 Metamorphism 5
2.1.6 Deformation 6
2.2 Local Geology 6
2.2.1 Deposit Limits 6
2.2.2 Ore Characteristics 7
2.2.3 Alteration 8
2.3 Previous Work 8
2.3.1 Pyrite Types 8
2.3.2 Vein Systems 8
3 Methods 10
3.1 Mapping 10
3.2 Geochemical Mineralogical Analyses 10
3.2.1 Petrography 10
3.2.2 Electron Probe Micro-Analyser 12
3.2.3 Laser Ablation Inductively Coupled Plasma Mass Spectrometry 13
4 Results 19
4.1 Vein Mapping 19
4.2 Mineralogy 20
4.3 Electron Probe Micro-Analysis 24
4.4 Laser Ablation Inductively Coupled Mass Spectrometry Analysis 26
4.4.1 Structural Gold Data 26
4.4.2 Gold Inclusion Data 29
4.4.2 Other Trace Element Data 31
5 Discussion 36
5.1 Vein Mineralogy 36
5.2 Oscillatory Zoning 39
5.3 Trace Elements in Vein Pyrite 41
5.3 Gold Concentrations 42
5.4 Pyrite Saturation 43
6 Conclusion 47
7 Future Work 48
8 References 49

List of Figures

Figure 1: Regional geology 5
Figure 2: Local geology 7
Figure 3: Sample locations 11
Figure 4: Example of trace element intensities 15
Figure 5: Primary mineralogy groups 22
Figure 6: Photomicrograph of sample 898A 22
Figure 7: Distribution of sulphide minerals 23
Figure 8: Pyrrhotite replacement of pyrite texture 24
Figure 9: EPMA maps of Co and Ni 25
Figure 10: Gold concentration distribution 28
Figure 11: Gold inclusion within pyrite fracture 30
Figure 12: Gold as nanoparticles within pyrite 30
Figure 13: Mineralogical assemblages observed by Helt et al. (2014) 37
Figure 14: Gold solubility limit determined by Reich et al. (2005) 44
Figure 15: Vein pyrite composition in Au-As space. 46
List of Tables
Table 1: Primary vein mineralogy 21
Table 2: Mass percent of Ni 26
Table 3: Mass percent of Co 26
Table 4: Gold concentrations in ppm 27
Table 5: Co and Ni concentrations in ppm 32
Table 6: Se and Ag concentrations in ppm 33
Table 7: Pb and Bi concentrations in ppm 34
Table 8: As and Sb concentrations in ppm 35

List of Appendices

Appendix A: Outcrop Observations.
Appendix B: Sample Information
B. 1 Outcrop scale observations of samples

B. 2 Thin Section Photos

Appendix C: Petrography Observations
Appendix D: EPMA Analysis
D. 1 Average error percent for each element during analysis
D. 2 Element crystals and standards used in analysis \qquad
D. 3 Element mass percent values
D. 4 Element mass percent errors for each grain
D. 5 Mass percent averages, minimums, maximums and ranges for Co
D. 6 Mass percent averages, minimums, maximums and ranges for Ni \qquad
Appendix E: LA ICP-MS Analysis \qquad
E. 1 Samples, grains and traverses measured in analysis
E. 2 Intensities of $\mathrm{S}, \mathrm{Au}, \mathrm{Ag} 107$ and Ag 109 with time.
E. 3 Segments measured from each traverse using Igor Pro and Iolite

Appendix F: Element Concentrations
F. 1 Duration, total points and beam seconds for analysis
F. 2 Au Concentrations and LOD for each standard \qquad
F. $3 \mathrm{Co}, \mathrm{Ni}, \mathrm{Se} 77$, Se 78 concentrations and LOD for NIST610
F. $4 \mathrm{Ag} 107, \mathrm{Ag} 109$, As and Sb concentrations and LOD for NIST610 \qquad
F. 5 Pb and Bi concentrations and LOD for NIST610 \qquad
F. 6 Co , As, Se 77 , and Se 78 concentrations and LOD for Mass 1 \qquad
F. $7 \mathrm{Ag} 107, \mathrm{Ag} 109, \mathrm{Sb}$ and Bi concentrations and LOD for Mass 1

Appendix G: Pyrite Saturation Calculations
G. 1 Converting Au in ppm to mole percent.
G. 2 Converting As in ppm to mole percent
G. 3 Gold Solubility Curve Calculations (Reich et al., 2005)
G. 4 Gold Solubility Curve Calculations (Deditius et al., 2014) \qquad

1 Introduction

1.1 Background

Canadian Malartic is the largest open pit gold mine in Canada, located within northern Quebec. This deposit lies southeast of the Abitibi greenstone belt, which is a prolific gold-bearing subprovince containing many gold camps along the Porcupine-Destor deformation zone as well as the Cadillac-Larder Lake deformation zone within it. This is a low grade high tonnage deposit with total proven and probable reserves currently standing at 10.7 Moz Au within 343.7 Mt , reaching a grade of $0.97 \mathrm{~g} / \mathrm{t}$ Au found within this deposit (Belzile and Gignac, 2011). Gold was found in the Malartic area in 1923 and mining operations began largely underground (Wares and Burzynski, 2012). It was eventually converted into an open pit mine in 2009 (Wares and Burzynski, 2012). The mineralization of this deposit is either in disseminated grains within the alteration zone or in fine veins (Helt et al., 2014). In addition, Cartier and Parbec were gold camps that are located near the Canadian Malartic deposit and their locations are shown in Figure 3.

Pyrite is one of the most abundant sulphide minerals within the Earth's crust. It is important for ore deposit geochemistry as it is commonly associated with gold either as inclusions or structurally bound within the crystal lattice (Deditius et al. 2011). The geochemistry and structure of the pyrite grains can record the evolution of the fluid from which it precipitated, which would ultimately provide further explanation of the origin of this gold deposit.

1.2 Objectives and Scope

This research contributes to the Natural Sciences and Engineering Research Council (NSERC) and Canadian Mining Innovation Council (CMIC) Footprints project, which aims to contribute to the future of mineral exploration of concealed and deeply buried targets. This will be
accomplished through understanding the geological, mineralogical, geochemical and geophysical parameters that define ore systems and their footprints (cmic-footprints.ca). This B.Sc. project aims to determine whether vein pyrite composition can define the Canadian Malartic footprint, which could ultimately be used as a tool for gold exploration. In order to do so, the objectives of this B.Sc. project are as follows:
a) To characterize veins containing pyrite within the footprint of the Canadian Malartic Mine, in the Pontiac meta-sedimentary host rock. This is to ensure the veins selected are related to the ore forming stage of the Canadian Malartic deposit.
b) To conduct mineralogical analyses of the veins and compare them with the mineralogy of the ore forming veins.
c) Conduct geochemical analyses of the veins to understand the fluids involved in its formation. These analyses will also determine the gold content within the vein pyrite in order to determine whether they define the footprint. These will also be compared with the pyrite disseminated within the meta-sedimentary host rocks in the deposit. Vein generations and their structural settings were characterized during field work at the Canadian Malartic mine property at Malartic, Quebec; this was completed in the summer of 2016 as part of the NSERC-CMIC Footprints project. The mineralogy and geochemistry of veins were analysed using petrographic microscopes and an electron probe micro-analyzer (EPMA) in the Alan D. Edgar Laboratory at the University of Western Ontario from September 2016 to March 2017. The trace element compositions of pyrite were analysed by the laser ablation inductively coupled mass spectrometer (LA ICP-MS) at the University of Windsor in December 2016.

2 Tectonic Setting

2.1 Regional Geology

The Canadian Malartic deposit lies within the Pontiac subprovince, which is in the southeastern portion of the Superior province. The contact between the two subprovinces is defined as the Cadillac-Larder Lake deformation zone, which is a tectonic zone of steeply dipping major faults, trending approximately E-W (Helt et al., 2014).

2.1.1 The Abitibi Subprovince

The Abitibi subprovince is a greenstone belt that is composed of meta-volcanic-plutonic rocks and meta-sedimentary rocks. It was formed largely by two volcanic zones: an older volcanic zone to the north aged 2730 to 2710 Ma , and a younger volcanic zone to the south, aged 2705 to 2698 Ma (Card and Poulsen, 1998). The Porcupine-Destor Fault zone separates these two volcanic zones as seen in Figure 1 (Card and Poulsen, 1998).

U-Pb dating of zircon grains indicated the greenstone belt had formed between 2760 to 2750 Ma (Corfu, 1993). Major pre-orogenic magmatism occurred in 2720 to 2700 Ma and calc-alkaline plutons occurred later from 2694 Ma to 2690 Ma (Corfu et al., 1989; Corfu, 1993; Ayer et al. 2002; Helt et al., 2014) along with flyschoid sediment deposition from 2696 to 2687 Ma (Davis, 1992; Ayer et al., 2002; Helt et al., 2014). Timiskaming-type conglomerates and fluvial sandstones then deposited unconformably on top of the previous sequences as a result of uplift and erosion (Corfu et al., 1991; Davis, 1992; Corfu, 1993; Helt et al., 2014).

2.1.2 The Cadillac-Larder Lake Deformation Zone

The Cadillac-Larder Lake deformation zone separating two subprovinces hosts many gold camps including Kirkland Lake and Larder Lake camps in Ontario, as well as the Rouyn-Noranda, Cadillac, Malartic and Val d'Or camps in Quebec (Wares and Burzynski, 2012). At the point in
which this deformation zone cuts through Malartic, it trends $\mathrm{N} 320^{\circ} \mathrm{E}$ and further east it trends $\mathrm{N} 280^{\circ} \mathrm{E}$ to $\mathrm{N} 290^{\circ} \mathrm{E}$, indicating the bifurcation of this fault zone (Gunning and Ambrose, 1940; Eakins, 1962). The lithostratigraphic group confined within this deformation zone is the Piché Group, which is composed of strongly deformed and altered mafic to ultramafic meta-volcanic rock (Wares and Burzynski, 2012).

2.1.3 The Pontiac Subprovince and Felsic Intrusions

The Pontiac subprovince south of the aforementioned deformation zone is largely composed of banded turbiditic greywacke, mudstone with some siltstone, ranging in bed thicknesses from about 1 mm to 1 m , forming approximately 2685 to 2682 Ma (Davis, 2002). The Pontiac subprovince is also intruded by porphyritic quartz monzodiorite to granodiorite intrusions formed approximately 2677 to 2678 Ma (Helt et al., 2014; De Souza et al., 2016). Their geometries vary, as they occur as sills, dykes, discontinuous lenses, as well as isolated stocks (Wares and Burzynski, 2012).

2.1.4 Lithostratographic Divisions of the Region

The main lithostratographic groups of the region reported by Wares and Burzynski (2012) are listed in order from north to south: The Malartic Groups composed of ultramafic volcanic rocks, the Kewagama Group is formed of greywacke, shale oxides facies iron formation and conglomerates. Additionally, the Blake River Group comprises predominately basalts, the Cadillac Group is mostly greywacke and polymictic conglomerates, the Piché Group is composed of talc-chlorite-carbonate schists, which represents strongly deformed and altered primary Mg-rich basalt and komatiitic volcanics. Finally, the group furthest south is the Pontiac meta-sedimentary rocks, which is the focus of this study.

Fig. 1 Regional geology showing the Abitibi subprovince to the north, the Pontiac subprovince in the south as well as the two major tectonic zones, the Porcupine-Destor fault zone as well as the Cadillac-Larder Lake Tectonic zone and the Canadian Malartic deposit (Wares and Burskynski, 2012).

2.1.5 Metamorphism

Regional metamorphism occurred 2677 to 2643 Ma (Powell, 1995), resulting in a pattern of increasing grade towards the south. North of the Cadillac-Larder Lake deformation zone is comprised of a subgreenschist facies to upper greenschist within the Piché group as well as upper greenschist to amphibolite facies within the Pontiac group south of the Cadillac-Larder Lake deformation zone (Dimroth et al., 1983; Powell et al., 1995). There is also a notable line of
constant metamorphic grade, called the garnet and staurolite isograd that occurs within the southern extremity of the Canadian Malartic deposit (Perrouty et al., 2017).

2.1.6 Deformation

This region underwent at least three deformation events (Derry, 1939). The first event, D1, occurred between 2687 to 2672 Ma , and is associated with tilting, folding and thrusting, leaving behind a rare and local pressure-solution S_{1} cleavage (Sansfaçon and Hubert, 1990). The second event, D_{2}, occurred between 2680 (Sansfaçon and Hubert, 1990) and 2660 Ma (De Souza et al., 2016), and it involved N-S shortening (Robert, 2001). This event resulted in a more penetrative NW-SE pressure-solution S_{2} cleavage, indicated by the alignment of biotite grains within the Pontiac meta-sedimentary rocks (Desrochers and Hubert, 1996). This event is also characterized by subvertical and subisoclinal F_{2} folds with axial planes that trend NE. The last deformation event, D_{3}, followed D_{2} but the ages are unknown. This event involved E-W shortening and generated small local kink folds (Desrochers and Hubert, 1996).

2.2 Local Geology

2.2.1 Deposit Limits

The northern limit of the Canadian Malartic deposit is defined by the Cadillac-Larder Lake deformation zone where the deposit lies within and immediately to the south of it (Figure 2) and the Sladen fault to the south of the deposit that trends E-W (Wares and Burzynski, 2012). The major rock units hosted within the Malartic deposit and footprint are the Piché meta-volcanic rocks, the Pontiac meta-sedimentary rocks and the monzodiorite intrusions (Wares and Burzynski, 2012). A third of the gold mineralization is hosted by the Piché group, the remaining gold mineralization lies south of the Cadillac-Larder Lake deformation zone where gold is
hosted in the Pontiac meta-sedimentary rocks and in the felsic porphyritic intrusions (Wares and Burzynski, 2012).

Fig. 2 Local Geology showing the Piché group, the Pontiac meta-sedimentary rock and felsic porphyritic intrusions in relation to Canadian Malartic deposit. (Wares and Burzynski, 2012).

2.2.2 Ore Characteristics

In the Canadian Malartic deposit, gold can be found largely as native gold and also as gold-silver-telluride minerals (Wares and Burzynski, 2012). It is found within two generations of thin and discontinuous veins, as well as finely disseminated grains in alteration zones around the main ore-stage veinlets (Helt et al., 2014). There is a strong association with gold mineralization and pyrite, and it is important to note that most of the gold grains associated with pyrite comprise approximately 49% of the native gold by volume (Helt et al., 2014). The ore is also associated
with other phases as well including chalcopyrite, galena, sphalerite, molybdenite, hematite and Ag-Pb-Bi telluride minerals (Eakins, 1962; Sansfaçon and Hubert, 1990; Fallara et al., 2000; Helt et al., 2014; De Souza et al., 2015, 2016). Sericite, chlorite, rutile, celestite, barite are also minor phases that are associated with gold mineralization.

2.2.3 Alteration

Five types of alteration have been observed in the deposit. Carbonate alteration occurs throughout the deposit. Albitization occurs mostly within the meta-sedimentary rock and silicification occurs mostly within the intrusions (De Souza et al., 2015). Potassic alteration results in the prevalence of biotite and K-feldspar within the deposit and sulphidation occurs within the sedimentary and intrusive rocks (De Souza et al., 2015).

2.3 Previous Work

2.3.1 Pyrite Types

Previous work by Gao et al. (2015) observed five stages of pyrite within the meta-sedimentary host rock in the Canadian Malartic deposit, unlike this study, which focuses on vein pyrite within the Canadian Malartic footprint. Pyrite 1 formed pre-mineralization where there are high Co, As and Se contents as well as low $\mathrm{Ni}, \mathrm{Sb}, \mathrm{Bi}$ and Pb contents. Gao et al. (2015) interprets this type to have formed pre-mineralization and is likely diagenetic pyrite. Pyrite 2, 3 and 4 formed during gold mineralization and are enriched in $\mathrm{Ag}, \mathrm{Pb}, \mathrm{Au}$ and Bi and contain largely K-rich silicate inclusions, suggesting that they precipitated from a K-rich fluid. Pyrite 5 formed postmineralization and contain high Co and Ni content and are low in other metals.

2.3.2 Vein Systems

A few studies have described the different vein systems within Malartic. Work by De Souza et al. (2015) described three types of veins. Vein 1 formed before the main ore forming stage and
contains low gold values. Vein 2 formed during the main ore forming stage which have biotite at its selvages, and contain various amounts of quartz, calcite, biotite, microcline, albite, chlorite, pyrite and ankerite, as well as trace amounts of chalcopyrite, telluride minerals, gold and scheelite. These veins are interpreted to have formed syn-late D_{2}. Vein 3 is divided into three subtypes. V3b contains high values of gold, up to 42.3 ppm and V3c varies in gold content from 0.013 to 6.7 ppm with similar mineralogy of Vein 2 but also contain minor amounts of rutile, tourmaline, galena, native free gold and telluride minerals.

A more recent study by De Souza et al. (2016) reinforces the idea that mineralization is associated with the D_{2} event. De Souza et al. (2016) observed that the ore zones are generally oriented NW-SE and E-W as they dominantly lie subparallel to S_{2}, which results from the D_{2} event. These ore zones also trend subparallel to the east trending Sladen fault to the south of the deposit. De Souza et al. (2016) proposed that the D_{2} deformation largely controlled gold mineralization at the Canadian Malartic deposit. Re-Os dating of molybdenite within high grade ore produced an age of $2664 \pm 11 \mathrm{Ma}$ (De Souza et al., 2016). This ore is thus considered to have formed syn-D2, which is dated between 2690 Ma (Sansfaçon and Hubert, 1990) and 2660 Ma (De Souza et al., 2016).

3 Methods

3.1 Mapping

Vein mapping was conducted on the Canadian Malartic property in order to classify veins based on mineralogy, timing and structural orientation. The structural controls observed in the field were: the sizes of veins, their orientations, cross cutting relationships with other veins as well as their relationship with the S 2 foliation and thus the D 2 event. Detailed descriptions of these outcrop observations are found within Appendix A. Twenty-five samples of veins containing pyrite grains were taken from the deposit, as well as proximal and distal to the deposit to understand whether the geochemical characteristics of the pyrite and vein vary in the Canadian Malartic deposit and footprint. In order to investigate vein pyrite variation in the footprint, the samples were taken parallel and perpendicular to metamorphic grade. Six samples were taken from the Canadian Malartic pit, and the remaining samples were taken along the two transects leading away from the deposit, seven samples trending NE-SW, which increased in metamorphic grade towards the south and twelve trending NW-SE, which were at a constant metamorphic grade (Figure 3). This study focused on the veins hosted by the Pontiac meta-sedimentary rocks, as they were the dominant host rock within the footprint as well as the Canadian Malartic deposit.

3.2 Geochemical and Mineralogical Analyses

3.2.1 Petrography

These samples were collected from outcrops along the two transects as well as drill cores. Twenty-five thin sections were prepared at Queen's University. Detailed descriptions of the samples as well as their outcrops are located in within Appendix B and photos of
hand samples are provided where available. Thin section images and the grains chosen for EPMA analysis as well as LA ICP-MS analysis are also within Appendix B.

Petrographic analysis was conducted using both transmitted and reflected light in the
Alan D. Edgar Laboratory at the University of Western Ontario. Detailed descriptions of the mineralogy, compositions of the veins, their selvages, alteration haloes and host rock are recorded in Appendix C.

Fig. 3 Sample locations of veins along the NW-SE and NE-SW transects relative to the Canadian Malartic deposit. Figure is modified from Perrouty et al. (2017).

3.2.2 Electron Probe Micro-Analysis (EPMA)

Electron probe micro-analysis (EPMA) was used to obtain compositional information of the vein pyrite grains and to understand their variation within the Canadian Malartic footprint. Elemental analyses were conducted using wavelength-dispersive spectroscopy (WDS) as well as energy-dispersive spectroscopy (EDS). WDS Maps displaying elemental distribution throughout the pyrite grains were created to determine zoning patterns. Spot analyses were also conducted on 10 points of each pyrite grain within the sample in order verify general elemental distribution within the grain and points were taken from the outer edge leading into the core of the grain. Measuring elemental distributions will show if the fluid concentrations varied or were similar between samples, within a sample or between grains.

The electron beam conditions used to create the maps of pyrite grains are: 15 keV accelerating voltage, $50 \mathrm{n} \AA$ probe current and a dwell time of 10 ms per pixel. The conditions for spot analysis in the pyrite grains are: A 15 keV accelerating voltage and a $50 \mathrm{n} \AA$ and a spot size of $2 \mu \mathrm{~m}$. The average percent errors for the elements analysed are located within Appendix D. Elemental standards and crystals used for EPMA analysis are also reported within Appendix D.

The elements analysed were (Cu), magnesium (Mg), arsenic (As), silicon (Si), lead (Pb), titanium (Ti), nickel (Ni), tungsten (W), cobalt (Co), iron (Fe), and sulphur (S). EPMA analyses measured mass percentages and error percentages for each element within pyrite. This data is found Appendix D as well. Mass percent averages of significant proportions of elements were calculated from each point and are also found within Appendix D.

Any negative mass percent values measured during EPMA analysis were adjusted to 0 as they represented values below background. Mass percent averages, minimums, maximums and ranges were then calculated for each grain and are reported in Appendix D.

3.2.3 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA ICP-MS)

LA ICP-MS measured the trace element concentrations. This technique was mainly used to quantify gold content within the pyrite grains along the length of a grain. Up to two pyrite grains were selected from 17 representative samples to measure gold content along these traverses. The samples, grains and traverses used for analysis are listed in Appendix E. The grains were selected based on zoning characteristics as well as ensuring they contained few inclusions, as they would have interfered with this analysis. The LA ICP-MS parameters of these traverses within this study were as follows: the laser output was at 35% with a pulse rate of 20 Hz and a spot size of $20 \mu \mathrm{~m}$, which is the smallest size to provide the best resolution with reasonable detection limits. This was conducted at a traverse speed of $5 \mu \mathrm{~m} / \mathrm{s}$ and laser pulse energy of 4.1 mJ . Analyses were conducted in five batches with different run times, which increased with increasing grain sizes. Batch 1 contained samples 153, 3415A, and 152, which ran for 244 seconds per grain. Batch 2 contained samples NB036, 173, 899A and 157, which ran for 182 seconds. Batch 3 contained samples 168A, 895B, 897A and 898A, which ran for 146 seconds. Batch 4 contained samples 164B, 866B, 171B and 154, which ran for 153 seconds. Finally, batch 5 contained samples 900 and 159 , which ran for 156 seconds. The following standards were used for the LA ICP-MS analysis: Nist610, which is a silicate glass, Po725, which is a synthetic pyrrhotite standard and Mass1, which is a synthetic
polymetal sulphide standard. The concentrations of the elements $\mathrm{Co}, \mathrm{Ni}, \mathrm{Se}, \mathrm{Ag}, \mathrm{Pb}, \mathrm{Bi}$, As, Sb and Au were determined by analyzing the abundance of the following isotopes: Co59, Ni60, Se77, Se78 Au197, Ag107, Ag109, As75, Pb208, Bi209, Sb121 and Au 197. The majority of the Se and Ag concentrations measured using Se77 or Se78 and Ag107 or $\operatorname{Ag} 109$ were similar, within $\pm 40 \%$. However, there is an isobaric Kr interference with Se 78 , and so Se abundances are based on Se 77 values. There is also a Zn -argide interference with Ag 107 , so the Ag 109 values were used to calculate Ag concentrations. These values were also compared with the vein pyrite compositions within the host rock of the deposit described by Gao et al. (2015), and especially to determine whether vein pyrite compositions define the Canadian Malartic deposit.

The laser counts the number of selected isotopes for each element with respect to time in seconds. In order to determine gold inclusions, figures of gold and sulphur counts were plotted against time. The sulphur counts represent the pyrite grain as broad curves. Gold measured at the same time as the broad sulphur curves are interpreted as structural gold within the pyrite. Any anomalously high peaks are interpreted as gold nanoinclusions within the pyrite grains, and can be confirmed when they occur simultaneously with silver since gold within this deposit is commonly associated with Ag-telluride minerals. These graphs (e.g. figure 4) were used to interpret where the inclusions are within each of the samples. These figures for each traverse, grain and sample are found within Appendix E.

When processing the data using the computer program Igor Pro with the Iolite extension, only certain parts of the peaks measured through LA ICP-MS were included in data processing. Figure 4 shows an example of the sulphur, gold, nickel and cobalt intensities
with respect to time within sample 3415A traverse A3. The anomalously high peaks of gold, seen in the figure as the red peaks, were interpreted to be gold inclusions and were removed from analysis. The edges of the grains were also removed from analyses as these values could have been influenced by the area surrounding the grains. Figure 4 also shows the segments of the grains used for analysis indicated by the black boxes that are labeled with the sample's name. Images of all the segments of pyrite used for analyses are located within section F3 in Appendix F. Figures of sulphur, gold, nickel and cobalt intensities measured by LA ICP-MS with the segments chosen for each traverse is found in section F3 in Appendix F. Igor Pro and Iolite then processed the gold concentrations for each segment chosen along each traverse for each of the standards used, giving each segment three values for each element when applicable. For the pyrite samples, the data was processed using the molecular weight of iron within pyrite which is 46.55% and for any pyrrhotite grains analysed, the data was processed using the molecular weight of iron within pyrrhotite, which is 62.33%. The data for each segment processed with each of the standards are displayed within Appendix G.

Fig. 4 Example of sulphur, gold, nickel and cobalt intensities measured through traverses within the pyrite grains of sample 3415A. Sections of traverse selected for analysis are indicated in black boxes labeled with the sample's name.

Average gold content in ppm for each sample could not be calculated as many of the segments analysed had concentrations below the detection limit. Since that value lies at some value between 0 ppm and the detection limit, the gold concentrations of those segments could not be quantified accurately. Thus, for the purpose of this study, maximum concentrations of gold for each sample within the three standards used were reported and an average limit of detection level was calculated for each sample. The level of detections reported were determined by taking an average of the level of detections for each sample within a standard and another average was taken of the three standards to determine an overall level of detection average for each sample. This same method was also conducted for the trace elements analysed with the addition of reporting minimum values. However, not all standards were applicable for each element and the standards that were applicable were used in determining maximum, minimum and level of detection concentrations.

4 Results

4.1 Vein Mapping

Two main types of vein generations were observed within the Canadian Malartic footprint within 55 outcrops. One of the vein generations formed after S_{2} indicated by the alignment of biotite grains as these veins crosscut S_{2} and lie at high angles to it. These veins are thus younger than D_{2}. Two vein sets were observed within this vein generation determined by their primary mineralogy, one had a main mineralogy of quartz and the other contained quartz and feldspar.

The other vein generation formed during D_{2}, as they were influenced by the structural components that formed as a result of D_{2}. Eight vein sets were observed within this vein generation based on their mineralogy and their timing relationship with D2. Vein sets 1,2 and 3 within this generation were sampled for this study as they contained pyrite and also formed during D_{2}. These veins had two different timing relationships with D_{2}. Vein type 1 crosscut S_{1}, which formed during D_{1}, but was still folded by F_{2}. Thus, this vein is older than D_{1} and formed during D_{2}. This vein contained quartz, feldspar as well as pyrite and was also boudinaged at some outcrops. Only two samples were of this type, sample 159 and 888B. Vein set 2 and 3 were constrained within S_{2}, meaning the biotite grains wrapped around the veins that lay sub-parallel to S_{2}, and some were boudinaged as well. Vein set 2 was composed of quartz and pyrite and was also boudinaged at some locations. Three of the samples were of this type, samples 3415A, 897A and 900. The remaining samples fall under vein set 3 and contained 3 subsets, $3 \mathrm{a}, 3 \mathrm{~b}$, and 3 c , which all contained
quartz, feldspar and pyrite but had crosscutting relationships with each other, as 3a crosscut 3 b , and 3 b crosscut 3 c .

The remaining vein sets of this generation were not sampled, as they did not contain pyrite. Vein sets 4,5 and 6 had the same timing relationship with D_{2} as vein set 1 but differed in its primary mineralogy of quartz, quartz and feldspar as well as quartz, feldspar and amphibole, respectively. Vein set 7 and 8 had the same timing relationship with D_{2} as vein sets 2 and 3 . Vein set 7 was composed of quartz and vein set 8 is composed of quartz and feldspar. Vein set 8 is also divided into three subtypes, $8 \mathrm{a}, 8 \mathrm{~b}$ and 8 c which crosscut each other as well, where 8 a crosscut 8 b and 8 b crosscut 8 c .

4.2 Mineralogy

While the sampled vein sets that were observed in outcrop scale had an observed mineralogy of quartz as well as quartz and feldspar, five groups of primary vein mineralogy can be distinguished from petrographic analyses. The groups are as follows and distribution of samples within these groups is displayed in Table 1:

Group 1: Quartz-Albite-K-feldspar-Calcite-Biotite
Group 2: Quartz-Albite-K-feldspar-Biotite
Group 3: Quartz-Albite-Calcite-Biotite
Group 4: Quartz-Albite-Biotite
Group 5: Quartz-Calcite-Biotite
The two samples of vein set 1 fell within group 4, vein set 3 samples all fell under group 5 and the remaining samples within vein set 2 fell under all of the groups. These primary vein mineralogy groups were well distributed throughout the pit and the two transects (Figure 5). Chlorite was present in nearly all samples and partly replaced biotite. An
example of chlorite replacement of biotite is shown in Figure 6 where the darker biotite portion of the grain is replaced by chlorite as indicated by its lighter green colour.

Table 1. Primary vein mineralogy distribution within samples

Group 1	Group 2	Group 3	Group 4	Group 5
152	899 A	162	159	3415 A
157	NB036	168	888 B	897 A
487	488	NB064	171 B	900
153	490	NB068	173	
164 B		895 B	NB061B	
154			898 A	
886 B				

The minor mineral composition is variable but may include chalcopyrite, galena, molybdenite, barite, rutile, ilmenite, titanite, apatite, muscovite, epidote, REE fluorocarbonate minerals, telluride minerals, scheelite and hornblende. Much like the primary vein mineralogy groups, these minor minerals are evenly distributed throughout the samples and are not specific to a location. Alteration haloes surround the veins and are characterized by bands of biotite at vein selvages and within the host rock. There is also disseminated pyrite as well as a reduced grain size within the host rock. An example of this alteration halo is also provided in Figure 6 where bands of biotite are present and run parallel to the veins and disseminated pyrite grains lay within a fine-grained host rock. Inclusions within the pyrite grains are largely composed of quartz, biotite, albite, k feldspar, chlorite, calcite, muscovite, chalcopyrite, telluride minerals, galena, molybdenite, REE flurorcarbonate minerals, epidote and apatite in variable proportions.

Fig. 5 Sample distribution of primary vein mineralogy groups. Figure is modified from Perrouty et al. (2017).

Fig. 6 Photomicrograph of 898A showing replacement texture and alteration halo.

Three sulphide mineral assemblages are observed within the samples and are displayed in Figure 7. Yellow symbols consist of pyrite grains, orange symbols consist of pyrite and pyrrhotite grains and red samples consist of pyrrhotite grains. The distribution of these three assemblages differ between the two transects as well. Yellow and orange samples are found along the E-W transect and display a random spatial distribution. Along the southern transect, pyrite is increasingly replaced by pyrrhotite as the sample dots are yellow towards the north, orange in the center and red towards the south. An example of this replacement texture is observed in Figure 8 within sample 749 taken from the Bravo zone on the Canadian Malartic property and its location is indicated in Figure 7. The pyrite grain in Figure 8 is replaced by pyrrhotite within the fractures of this grain as indicated by the light coloured mineral within the pyrite grain.

Fig. 7 Distribution of sulphide mineral assemblages and location of Sample 749 from the Bravo zone. Figure is modified from Perrouty et al. (2017).

Fig. 8 Sample 749 from the Bravo zone. The darker pyrite grain is replaced by pyrrhotite within the fractures of the grain as indicated by the lighter colour.

4.3 Electron Probe Micro-Analysis

EPMA maps taken of pyrite grains from samples 153A and NB036 display an oscillatory zoning pattern. This pattern is shown in Figure 9a-d and is defined by concentric bands of differing nickel and cobalt content. Both grains show cores of pyrite that are enriched in cobalt and its outer edges are more enriched in nickel with the enrichment displayed in the brighter colours.

Due to the varied enrichment in both nickel and cobalt observed in the pyrite grains with oscillatory zoning, EPMA point data was also measured in pyrite grains with the remaining samples in order to record the differences in these elements. Points were taken from the edge of the grains towards the core of the grains, to record the difference in nickel and cobalt content.

Fig. 9 EPMA maps of pyrite grains showing elemental distribution within. A: Ni distribution within sample 153A, grain C, B: Co distribution within sample 153A, grain C, C: Ni distribution within sample NB036, grain A, D: Co distribution within sample NB036, grain A. Brighter colours indicate enrichment of the element.

The mass percent values of nickel and cobalt in pyrite grains are displayed in Table 2 and Table 3, respectively. The remaining elements measured during EPMA point analysis did not show significant mass percentages within the pyrite grains and were thus not reported. Sample 153 varies in mass percent values of nickel from 0% in the core, which is in the periphery of the arsenopyrite inclusion in Figure 9a, to 3.69% at the edge of the pyrite grains. Mass percent values of cobalt for sample 153 varied from 24.80% in the core to 0.04% at the edge of the pyrite grain. Large ranges in mass percentages cobalt were also observed in sample 886B as well as 164B. The remaining samples did not display large ranges in cobalt and nickel enrichment, including the samples taken from the Canadian Malartic pit.

Table 2. Mass percent average, maximum, minimum and range of Nickel within each sample

Sample	Mass\% Avg	Mass\% min	Mass\% max	Mass\% range
168A Grain C	0.2	<LOD	0.8	0.8
3415A Grain A	0.03	0.01	0.1	0.05
153A Grain C	0.8	<LOD	3.7	3.7
886B Grain A	0.2	<LOD	0.9	0.9
NB036 Grain A	0.9	0.3	2.7	0.03
NB036 Grain B	0.01	<LOD	0.03	2.4
490 Grain A	0.01	<LOD	0.03	0.03
157 Grain A	0.02	<LOD	0.03	0.03
154 Grain A	0.03	<LOD	0.1	0.1
895B Grain A	0.01	<LOD	0.01	0.01
895B Grain B	0.01	0.01	0.04	0.04
164B Grain C	0.08	<LOD	0.2	0.2
162 Grain A	<LOD	<LOD	0.01	0.04

Table 3. Mass percent average, maximum, minimum and range of Cobalt within each sample

Sample	Mass\% Avg	Mass\% min	Mass\% max	Mass\% range
168A Grain C	0.06	0.04	0.2	0.1
3415A Grain A	0.07	0.03	0.2	0.1
153A Grain C	3.3	0.04	24.8	24.8
886B Grain A	0.4	0.05	2.2	2.1
NB036 Grain A	0.2	0.05	0.4	0.4
NB036 Grain B	1.1	0.09	1.9	1.9
490 Grain A	0.06	0.05	0.09	0.05
157 Grain A	0.2	0.04	0.6	0.5
154 Grain A	0.05	0.04	0.1	0.06
895B Grain A	0.07	0.05	0.1	0.04
895B Grain B	0.07	0.05	0.1	0.05
164B Grain C	0.9	0.01	2.8	2.8
162 GrainA	0.05	0.03	0.07	0.04

4.4 Laser Ablation Inductively Coupled Mass Spectrometry Analysis

4.4.1 Structural Gold Data

Gold maximum, minimum and level of detection concentrations are reported in ppm within Table 4. Significant values of gold were interpreted to be greater than 0.1 ppm .

These values were only found within the maximum values of 8 samples: 153, 3415A, 152, NB036, 157, 897A, 898A and 154. The highest concentrations of structural gold were within samples 152,3415 A, 157, 898A and NB036. For every sample, the minimum values of gold measured were below the detection limit, meaning that the minimum values were anywhere between 0 ppm to the detection limit concentration. 159 and 164B contained pyrrhotite and not pyrite; therefore the gold values in Table 4 for these samples represent structural gold within pyrrhotite grains. Also, for samples 164B, 900 and 159 , the detection limits were anomalously high so this data was discarded.

Table 4. Maximum, minimum and limit of detection concentrations (in ppm) for Au

Sample	Au Max	Au Min	Au LOD
153	0.13	< LOD	0.06
3415A	0.28	< LOD	0.04
152	0.64	< LOD	0.06
NB036	0.63	< LOD	0.03
173	< LOD	< LOD	0.03
899A	< LOD	< LOD	0.02
157	0.34	< LOD	0.07
168A	0.08	< LOD	0.06
895B	0.04	< LOD	0.03
897A	0.11	< LOD	0.10
898A	0.37	< LOD	0.04
164B	< LOD	< LOD	0.34
886B	< LOD	< LOD	0.04
171B	< LOD	< LOD	0.05
154	0.17	< LOD	0.09
900	< LOD	< LOD	0.15
159	<LOD	$<$ LOD	0.15

Gold concentrations as a function of distance from the deposit are displayed in Figure 10. The distance of each sample was measured from its distance from reference sample 488, which lay closest to the center of the pit. The green symbols indicate the maximum concentrations of gold that were assigned a numerical value. The red symbols indicate the
limit of detection. The grey area underneath the red symbols indicate the region where the minimum concentrations of each grain lies, as they are all below the detection limit for each sample. Samples taken from the pit are labeled in green, samples taken from the $\mathrm{N}-\mathrm{S}$ transect are labeled in red and samples taken from the E-W transect are labeled in blue. The gold concentrations within each segment measured for each sample are listed within Appendix F and the majority of the concentrations for each grain were below 0.1 ppm or below the detection limit.

Fig. 10 Gold distribution within the samples as a function of distance from the deposit. Pit samples are labeled in green, samples taken from the N-S transect are labeled in red and samples taken from the $E-W$ transect are labeled in blue.

4.4.2 Gold Inclusion Data

Gold inclusions were determined by looking at the intensities of sulphur gold and silver over time, i.e., spikes above background are considered to be inclusions. The full set of figures are found within Appendix F. Gold inclusions were found within 4 of the 17 samples analyzed and are 152, 3415A, 157 and 898A. 3 of these samples were taken from the Canadian Malartic pit and gold inclusions were found in multiple traverses within these grains. Sample 898A contained one gold inclusion within one of the traverses analysed.

Two types of gold inclusions are observed within the sample. The first type of inclusion exists within the fractures of the grains and these are observed in one of the inclusions from 3415A and the single inclusion within 898A. A gold inclusion lying within the fracture of the pyrite grain is displayed in Figure 11. In this figure, there is a drop in sulphur intensity, which is inferred to be a fracture within the pyrite grain and this occurs simultaneously with a sharp increase in gold content. The other type of gold inclusion occurs as nanoparticles within the pyrite grain and is found within the remainder of the observed gold inclusions. This is shown in Figure 12 where the sulphur intensity within the pyrite grain remains consistent with a simultaneous increase in gold intensity.

Fig. 11 Example of gold inclusion existing within the pyrite grain fracture along traverse A3 within sample 3415A.

Fig. 12 Example of gold nanoparticle within the pyrite grain along traverse G2 in sample 152.

4.4.3 Other Trace Elements

Trace element maximum and minimum values as well as limits of detection are reported in ppm in Tables 5 to 9. These trace elements include $\mathrm{Ni}, \mathrm{Co}, \mathrm{Se}, \mathrm{Ag}, \mathrm{As}, \mathrm{Sb}, \mathrm{Pb}$ and Bi . While these values are reported in both maximum and minimum values, many grains contain concentrations of $\mathrm{Ag}, \mathrm{As}, \mathrm{Se}, \mathrm{Pb}$ and Bi much greater than the level of detection as well as 0.1 ppm and are enriched in these trace elements. Generally, the samples also contain low values of Sb as the majority of the maximum values are below 0.1 ppm or below the detection limit.

Table 5. Maximum, minimum and limit of detection (LOD) concentrations in ppm of Co and Ni within vein pyrite samples

Sample	Co Max	Co Min	Co LOD	Ni Max	Ni Min	Ni LOD
153	8900	11	0.02	4390	15	0.3
3415A	735	43	0.02	691	177	0.2
152	370	42	0.03	765	84	0.3
NB036	17280	450	0.02	6670	4	0.1
173	2710	63	0.02	478	215	0.2
899A	340	82	0.02	1518	880	0.2
157	1910	5	0.06	318	24	0.5
168A	8.7	0.05	0.02	1518	880	0.2
895B	973	366	0.01	334	87	0.2
897A	37600	2900	0.03	7700	870	0.5
898A	405	64	0.01	770	138	0.2
164B	1161	325	0.2	1430	780	2.3
886B	680	57	0.02	272	92	0.2
171B	4910	27	0.03	1120	48	0.4
154	830	0.3	0.05	1020	97	0.5
900	6200	31	0.1	293	13	1.0
159	142	20	0.1	530	3	1.2

Table 6. Maximum, minimum and limit of detection (LOD) concentrations in ppm of Se and Ag within vein pyrite samples

Sample	Se Max	Se Min	Se LOD	Ag Max	Ag Min	Ag LOD
153	27	1	0.6	3	0.05	0.03
3415A	19	3	0.5	1	$<$ LOD	0.02
152	28	15	0.8	2	0.04	0.03
NB036	50	19	0.4	469	$<$ LOD	0.01
173	13	5	0.5	0.4	$<$ LOD	0.02
899A	13	6	0.4	$<$ LOD	$<$ LOD	0.01
157	21	6	1.3	6	$<$ LOD	0.05
168A	50	8	0.6	1	0.05	0.01
895B	6	4	0.4	0.01	$<$ LOD	0.01
897A	102	39	1.2	110	4	0.02
898A	36	20	0.5	1	0.01	0.01
164B	49	21	5	6	$<$ LOD	0.1
886B	13	5	0.4	0.1	$<$ LOD	0.01
171B	23	5	0.7	0.04	$<$ LOD	0.02
154	24	3	1	0.3	$<$ LOD	0.03
900	47	3	2	0.04	$<$ LOD	0.04
159	35	27	3		1	0.06

Table 7. Maximum, minimum and limit of detection (LOD) concentrations in ppm of Pb and Bi within vein pyrite samples

Sample	Pb Max	Pb Min	Pb LOD	Bi Max	Bi Min	Bi LOD
153	118	0.5	0.03	57	0.01	0.01
3415A	4	0.04	0.02	0.5	$<$ LOD	0.01
152	63	0.3	0.03	9	$<$ LOD	0.01
NB036	740	0.06	0.02	720	0.01	0.01
173	6	0.15	0.02	4	0.01	0.01
899A	0.5	$<$ LOD	0.02	0.14	$<$ LOD	0.01
157	7	0.2	0.05	38	0.1	0.01
168A	270	6	0.02	11	0.01	0.01
895B	0.07	0.02	0.01	0.03	$<$ LOD	0.01
897A	7100	167	0.05	77	2	0.01
898A	8	1	0.02	33	0.1	0.01
164B	18	1	0.18	1	0.03	0.04
886B	37	2	0.01	0.03	0.01	
171B	1	0.03	0.03	0.04	0.01	0.01
154	4	0.07	0.04	18	$<$ LOD	0.01
900	39	$<$ LOD	1.19	28	0.08	0.02
159	22	1	0.07			0.02

Table 8. Maximum, minimum and limit of detection (LOD) concentrations in ppm of As and Sb within vein pyrite samples

Sample	As Max	As Min	As LOD	Sb Max	Sb Min	Sb LOD
153	2700	3	0.46	3	< LOD	0.07
3415A	33	1	0.29	0.05	< LOD	0.05
152	28	4	0.51	0.20	< LOD	0.08
NB036	4770	8	0.28	0.04	< LOD	0.04
173	11	1	0.32	0.03	< LOD	0.05
899A	411	117	0.24	< LOD	< LOD	0.04
157	33	1	0.92	0.07	< LOD	0.13
168A	2	< LOD	0.40	18	0.4	0.06
895B	2	1	0.26	< LOD	< LOD	0.03
897A	274	32	0.72	6	0.8	0.09
898A	920	135	0.30	0.2	< LOD	0.05
164B	4	< LOD	3.44	< LOD	< LOD	0.51
886B	100	7	0.34	3	0.1	0.04
171B	115	3	0.52	< LOD	< LOD	0.08
154	232	1	0.77	< LOD	< LOD	0.12
900	11	< LOD	1.39	< LOD	< LOD	0.24
159	4	< LOD	1.54	< LOD	< LOD	0.24

5 Discussion

5.1 Vein Mineralogy and Structural Relationships

While a few studies have been conducted on the veins within the deposit, studies of the veins within the footprint are limited. However, the veins observed within this study closely resemble the veins interpreted to have formed during the main ore mineralization stage in the deposit as described by both Helt et al. (2014) as well as De Souza et al. (2015).

Helt et al. (2014) reported the mineralogy observed within 3 main vein types within the Canadian Malartic deposit and are reported in Figure 13. V1 was associated with the preore stage of gold mineralization, $\mathrm{V} 2_{\text {main }}$ formed during the main ore stage and $\mathrm{V} 2_{\text {late }}$ were late ore stage veins (Helt et al., 2014). Finally, V3 veins formed post-ore mineralization (Helt et al., 2014). The mineralogy of the veins observed within this study closely resembles that of the $\mathrm{V} 2_{\text {main }}$ veins. The $\mathrm{V} 2_{\text {main }}$ vein is the only type that contains pyrite, which is observed within all of the samples collected for this study. These V2 main veins are also largely composed of plagioclase, quartz, k -feldspar, biotite, muscovite and ankerite (Helt et al., 2014). This primary mineralogy matched the minerals observed in the primary vein mineralogy of the samples within this study. However, these major minerals within the samples of this thesis occur in variable proportions and do not include ankerite. The minor mineralogy of these $\mathrm{V} 2_{\text {main }}$ veins is also very similar to the minor minerals found within the majority of samples in this study, which include, barite, scheelite, titanite, chalcopyrite, galena, molybdenite, and rutile (Helt et al., 2014). There is thus a strong similarity in both major and minor mineralogy of the veins sampled in this study with the $\mathrm{V} 2_{\text {main }}$ veins associated with the main stage of gold mineralization.

Fig. 13 Mineralogical assemblages of vein types in relation to different ore stages. Thicker lines denote a greater presence of the mineral, (Helt et al., 2014).

As previously mentioned, De Souza et al. (2015) also described 3 main vein types within the deposit and interpreted that the V2 veins in this study were also related to the main stage of gold mineralization. Much like the veins sampled in this study, the V2 veins described in De Souza et al. (2015) generally contained biotite selvages. These V2 veins also shared a similar mineralogy as the veins within this study as they were also composed of quartz, calcite, biotite, K-feldspar, albite, chlorite, and pyrite in variable proportions, but the veins in this study did not contain Fe-rich dolomite and ankerite observed within the V2 veins (De Souza et al., 2015). The V2 veins described by De

Souza et al. (2015) contained minor amounts of chalcopyrite, tellurides and scheelite, which are all observed within the samples of this study. However the veins in this study contained many more minor minerals. Unlike the V2main veins described by Helt et al. (2014) the minor mineralogy described in De Souza et al. (2015) did not match with the samples of this thesis as strongly as it only mentioned 3 minor minerals. However, the study by De Souza et al. (2015) agreed more strongly in its major mineralogy as each of the major minerals observed were present in variable proportions much like this study where five groups of primary vein mineralogy are observed.

The V2 veins were interpreted to have formed during syn-late D_{2} as they were present as both deformed and undeformed filled fracture veins that lie subparallel to S_{2}, with some that were crenulated at high angles to S_{2} (De Souza et al., 2016). Vein sets 2 and 3 that were classified in this study were constrained within S_{2} and lie sub-parallel to it. They could thus be interpreted to be filled fracture veins as well, especially considering that some veins were even boudinaged along the S_{2} direction. While the V 2 veins described by De Souza et al. (2016) resemble the majority of the samples in this study in both mineralogy and structural relationships, the 2 samples of vein set 1 do not share the same structural relationship as they are folded by F_{2} and do not lie sub parallel to S_{2} nor are they crenulated.

A study within Cartier, a smaller region of the deposit's footprint, was one of the few investigations conducted on the vein systems within the Canadian Malartic footprint (Blacklock, 2015). Vein types A and B within this study resemble the veins observed in this study based on its structural relationship to S_{2} and mineralogy. Vein type A had been observed to be tightly folded by D_{2} much like samples 159 and 888B within this study,
and the mineralogy of vein A matched these samples as well, which consisted of quartz, feldspar and biotite (Blacklock, 2015). Vein type B is generally oriented along S2 much like the remaining samples within this study but its mineralogy is similar to that of vein type A, which consisted of quartz, feldspar and biotite (Blacklock, 2015). This vein set matches the mineralogy and structural relationships of S_{2} of the samples from primary mineralogy groups 2 and 4 within this study. The samples in this thesis do not resemble the mineralogy of vein sets A and B as strongly as they resemble the vein types of Helt et al. (2014) and De Souza et al. (2015) as they only share 3 major minerals. Blacklock (2015) inferred that these two vein sets formed before D_{2} as they were deformed by the structural components that formed as a result of D_{2}, but it is more likely that these veins formed during the second deformation event as interpreted by De Souza et al. (2016) as well as this study where the veins formed either subparallel to S_{2} as fracture-filling veins or perpendicular to S_{2} as tension veins, which were then boudinaged along S_{2} and folded by F_{2}. Due to the general similarity in mineralogy and structural relationships of the veins sampled for this study with the veins studied in the deposit by both Helt et al. (2014) and De Souza et al. $(2015,2016)$, the veins within this thesis are inferred to have formed during the main stage of gold mineralization.

5.2 Oscillatory Zoning

The oscillatory zoning pattern observed in samples 153 and NB036 display a varying enrichment of nickel and cobalt. These pyrite grains could have formed as a result of two different processes. The first possibility is that the pyrite crystals grew from an evolving fluid. A study conducted by Schumacher et al. (1998), described oscillatory zoning within garnet, alternating between its calcium rich grossular component and its iron rich
almandine component. Schumacher et al. (1998) attributed this zoning pattern to continuous reactions occurring during regional metamorphism, where there was complex growth and resorption of the garnet as a result of changing pressure and temperature conditions (Schumacher et al., 1998). So, small scale variations in regional metamorphism would result in variable $\mathrm{P}-\mathrm{T}$ conditions that would favour differences in the rate of production of the mineral in different stages (Willner et al., 2001). A study conducted by Zacharias et al. (2016) agreed with this evolving fluid theory and attributed the oscillatory zoning pattern observed in pyrite grains indicated by its varying arsenic content to changes in arsenic activity of the fluid during pyrite precipitation or also in changing P-T conditions.

The second possibility is that the pyrite crystals precipitated from multiple fluids. A study conducted by Putnis et al. (1992) experimentally reproduced this compositional oscillatory zoning pattern in ($\mathrm{Ba}, \mathrm{Sr)} \mathrm{SO}_{4}$ solid solutions grown by diffusion transport of $\mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}$ and $\mathrm{SO}_{4}{ }^{2-}$ ions from BaSO_{4} and SrSO_{4} solutions. The crystals grew in nonequilibrium supersaturated conditions as nucleation of each zoned layer occurred when the supersaturation threshold of either solution was exceeded first (Putnis et al., 1998). This threshold required for nucleation and growth is strongly dependent on composition since the two solutions had large differences in solubility, resulting in concentration gradients that would preferentially nucleate one end member in supersaturated conditions over the other end member (Putnis et al., 1998). The concept of multiple fluids producing an oscillatory zoning pattern could explain how the pyrite grains had grown in this study with varying nickel and cobalt content as well.

Since the mineralogy and structural relationships of the veins sampled in this study closely resemble the veins associated with the main stage of gold mineralization, the genetic model of the Canadian Malartic deposit may explain the fluids involved in pyrite precipitation. Helt et al. (2014) inferred that gold mineralization occurred from an evolving fluid originating from exsolution of monzodioritic magma at mid crustal levels. This study suggests that as this fluid ascended to the surface, the host rock had undergone potassic alteration, carbonation and sulphidation as a result of $\mathrm{H}_{2} \mathrm{~S}$ loss in the fluid, increasing oxygen fugacity and also a drop in temperature. Analysis of the gold content within the pyrite could further suggest whether these samples are reflective of the deposit.

5.3 Trace Elements in Vein Pyrite

Gao et al. (2015) proposed 5 stages of host rock pyrite within the deposit based on their trace element composition and stages 1-4 seem to contain similar geochemical characteristics as the vein pyrite. As mentioned previously, stage 1 pyrite grains are enriched in $\mathrm{Co}, \mathrm{As}, \mathrm{Se}$ and are low in $\mathrm{Ni}, \mathrm{Sb}, \mathrm{Bi}$ and Pb . Stages 2 to 4 are enriched in Ag , $\mathrm{Te}, \mathrm{Pb}, \mathrm{Au}$, and Bi . Stage 5 is enriched in Co and Ni but low in the other trace elements. The trace element compositions of the vein pyrite in this study share similarities with both stage 1 and stages 2-4 pyrite. Much like the stage 1 pyrite, the vein pyrite is enriched in Co , As and Se , however it is also enriched in Pb, Bi and mostly Ag as well which should have been low in stage 1 veins. The vein pyrite grains also resemble stages 2-4 pyrite as they are enriched in Pb, Bi, and largely Ag . However, unlike the pyrite grains of stages 2-4, the majority of the vein pyrite samples within the Canadian Malartic footprint are not enriched in Au in terms of gold incorporated within the lattice, as the majority of the segments measured contained low concentrations of gold. Since the vein pyrite share
some similarities with both the stage 1 pyrite and the pyrite grains from stages 2-4, the vein pyrite could also be an intermediate between the two types, meaning they could have occurred between pre-mineralization and the main ore stage of mineralization. It could also suggest that different fluids were involved in the mineralization of host rock pyrite and the vein pyrite.

5.4 Gold concentrations

It would be inaccurate to base vein pyrite compositions on the minimum values measured within the grains as they all are not assigned numerical values and thus lay at some point between 0 ppm and the detection limit concentration. Since the gold concentrations of the majority of the segments measured lie below the detection limit or below 0.1 ppm , it can be inferred that these vein pyrite compositions generally contain values of gold that are not significant. This is also the case for the gold compositions of vein pyrrhotite grains within samples 159 and 164B, where both the maximum and minimum values of gold lie below the detection limit. Samples 898A and NB036 contain anomalously high maximum gold concentrations, but they are located within Parbec as well as Cartier and are inferred to contain high values since they are associated with gold mineralization zones. When looking solely at the maximum concentrations of gold within the rest of the samples, there is a general trend of decreasing gold content away from the deposit. This trend is observed within samples from both transects, suggesting that metamorphic grade does not influence gold concentrations. This relationship between the distance of the samples and their gold concentrations suggests that the vein pyrite grains are associated with the Canadian Malartic deposit as they increase in maximum gold content towards the deposit. This association could mean that maximum vein pyrite compositions of gold
could be used as a weak vector to define the Canadian Malartic Footprint as it only accounts for maximum values of gold found within the pyrite grains. While the vein and vein pyrite sampled for this study show an association with the Canadian Malartic deposit, the genetic model of the deposit described by Helt et al. (2014) may not be strongly supported. Helt et al. (2014) described that gold mineralization originated from an evolving fluid, however the gold inclusions observed within this study suggest that there may be at least two separate gold mineralization events where one fluid could have crystallized the pyrite grains and the nanoinclusions present within them as observed in samples $152,3415 \mathrm{~A}$ and 157 . The other type of gold inclusions observed within the fracture of pyrite grains within sample 3415A and 898A suggest that a secondary fluid formed gold inclusions within the fractures afterwards.

5.5 Pyrite Saturation

Studies by Reich et al. (2005) and Deditius et al. (2014) explained the relationship between As and Au compositions within pyrite grains. Reich et al. (2005) determined that the maximum concentration of Au involved in the structure of pyrite is a function of As within the pyrite, meaning increasing amounts of As correlate with increasing amounts of Au. The relationship determined from this study is displayed in Figure 14. The line within the figure is the solubility limit of Au within pyrite determined by Reich et al. (2005) using the equation:

$$
\mathrm{C}_{\mathrm{Au}}=\mathrm{C}_{\mathrm{As}} \times 0.02+4 \times 10^{-5}
$$

This equation uses compositions of Au and As in mole percent and means that below the gold solubility limit, gold will be found within the pyrite grain in solid solution and crossing above the curve due to an increase in Au content or decrease in As content
suggest that gold exists as nanoparticles within the pyrite. The opposite trend suggests that gold will exist within the pyrite structure. Deditius et al. (2014) examined this relationship introduced by Reich et al. (2005) and studied arsenic pyrite from multiple environments including orogenic deposits such as the Canadian Malartic deposit. The orogenic pyrite compositions in the study by Deditius et al. (2014) fall underneath the line in Figure 14, suggesting that these pyrite grains are controlled by a different solubility limit. Deditius et al. (2015) created a modified gold solubility limit for orogenic pyrite and is stated as the following equation:

$$
\mathrm{C}_{\mathrm{Au}}=\mathrm{C}_{\mathrm{As}} \times 0.004+2 \times 10^{-7}
$$

Fig. 14 Compositions of pyrite in Au-As space in mol\%, showing the solid solubility limit of Au (Reich et al., 2005).

These two curves are plotted against the vein pyrite compositions within this study in
Figure 15. The only samples that contained maximum values of gold that were assigned numerical values are plotted.

Similar to the results of Reich et al. (2005) and Deditius et al. (2014), the Au content within the vein pyrite grains appear to be a function of the As content as there appears to be an increase in gold with increasing As content. Samples 168A and 895B contain low As and Au concentrations and these concentrations increase for the rest of the samples. The vein pyrite compositions were also similar to the orogenic pyrite compositions from Deditius et al. (2014), as they all lie below the solubility limit determined by Reich et al. (2005) but the majority of the vein pyrite compositions also lie below the solubility limit determined by Deditius et al. (2014). The position of the vein pyrite compositions in relation to the gold solubility curves thus suggest that the vein pyrite grains are undersaturated with respect to gold. This relationship is supported by the vein pyrite compositions as the majority of samples do not contain inclusions. Samples 152, 3415A and 157 lie within and over the gold solubility limit of Deditius et al. (2014). These samples were from the pit and all contain gold inclusions, suggesting they are saturated or oversaturated with respect to gold. Sample 898A also contains a gold inclusion but lies further from the solubility curves. However, unlike the samples from the pit, which contained multiple inclusions only one gold inclusion was observed from the 4 traverses measured and may be considered negligible. Samples 168A and 895B were anomalies as they lie above the gold solubility limit but lack gold particles. This may be attributed to a maximum gold concentration at the detection limit.

These gold solubility limits are also temperature dependent as As and Au concentrations within pyrite decrease with increasing temperature, resulting in Au solubility within pyrite to decrease as well (Deditius et al., 2014). Since the Canadian Malartic deposit is orogenic and correspond well to the gold solubility limits of Deditius et al. (2014), these
samples are higher temperature and have lower gold solubility limits within the grains, especially when compared to the pyrite compositions of Reich et al. (2005).

Thus the pyrite grains are undersaturated with respect to gold, resulting in the majority of the gold values to be interpreted as structural gold. The gold values below the curve of Deditius et al. (2014) lie further from the curve, which explains why the grains are generally low in gold content.

Fig. 15 Compositions of vein pyrite in ppm, the red curve represents the gold solubility limit determined by Reich et al. (2005) and the green curve represents the gold solubility limit determined by Deditius et al. (2014).

6 Conclusion

There is potential for vein pyrite compositions to be used as a vector to define the Canadian Malartic footprint. The mineralogy and structural characteristics of the veins sampled within this study closely can be inferred to have formed during the main stage of gold mineralization. The trace element concentrations of the vein pyrite surrounding the deposit do not closely reflect the trace element concentrations of the host rock pyrite grains in the footprint studied by Gao et al. (2015).

The oscillatory zoning pattern observed within the pyrite grains infer that the origin of the vein pyrite involve fluid mixing or fluid evolution.

Structural gold compositions within the vein pyrite are generally low, however when looking solely at the maximum gold compositions within the pyrite grains, there is a general decrease in maximum gold composition away from the deposit, and structural gold compositions within vein pyrite could thus be used as a weak vector to define the Canadian Malartic footprint. Multiple mineralization events may be inferred due to the presence of two types of gold inclusions within the vein pyrite grains. The relationship between As and Au with respect to gold solubility within pyrite grains infer that the pyrite grains are undersaturated with respect to gold. This undersaturation is supported by the vein pyrite gold compositions as these pyrite grains generally contain low values of structural gold and the samples closest to the gold solubility curve are the only ones that contain gold inclusions.

7 Future Work

Vein pyrite compositions within the deposit must be characterized in more depth to understand vein pyrite variation within the deposit itself. Increased sampling will improve the understanding of the fluids involved as there would be stronger comparisons between the footprint vein pyrite and the deposit vein pyrite.

The two types of gold inclusions observed within the vein pyrite suggest multiple fluid events and future work could focus on an in-depth analysis of gold inclusions within the grains to understand the mineralization events involved.

More vein pyrite samples collected at higher densities would also be able to refine the suggestion that vein pyrite compositions can be used as a weak vector in defining the Canadian Malartic footprint. The relationship between distance and maximum gold content can be strengthened with an increased number of points that are more closely spaced.

8 References

Ayer, J.A., Thurston, P.C., Bateman, R., Dubé, B., Gibson, H.L., Hamilton, M.A., Hathway, B., Hocker, S.M., Houlé, M.G., Hudak, G., Ispolatov, V.O., Lafrance, B., Lesher, C.M., MacDonald, P.J., Péloquin, A.S., Piercey, S.J., Reed, L.E., and Thompson, P.H., 2005, Overview of results from the Greenstone Architecture Project: Discover Abitibi Initiative: Ontario Geological Survey Open File Report 6154, p. 146.

Belzile, E., and Gignac, L.P., 2011, Updated resource and reserve estimates for the Canadian Malartic project Malartic, Quebec: NI 43-101 Report, p. 261.

Blacklock, N., 2015, Vein characterization using structural controls and petrographic analysis at Cartier zone in the Canadian Malartic property at Malartic, Quebec: Unpublished B.Sc. honours thesis, Kingston, Canada, Queen's University, 58 p.

Card, K.D., and Poulsen, K.H., 1998, Geology and mineral deposits of the Superior province of the Canadian Shield, in Lucas, S.B., and St-Onge, M.R., ed., Geology of the Precambrian Superior and Grenville provinces: Geological Survey of Canada, Geology of Canada Series No. 7, p. 13-194.

Corfu, F., 1993, The evolution of the southern Abitibi greenstone belt in light of precise U-Pb geochronology: Economic Geology, v. 88, p. 132-1340.

Corfu, F., Jackson, S.L., and Sutcliffe, R.H., 1991, U-Pb ages and tectonic significance of late alkali magmatism and non-marine sedimentation, Timiskaming Group, southern Abitibi belt, Ontario: Canadian Journal of Earth Sciences, v. 28, p. 489-503.

Corfu F., Krough, T., Kwok, Y., and Jensen, L., 1989, U-Pb zircon geochronology in the southwestern Abitibi greenstone belt, Superior Province: Canadian Journal of Earth Sciences, v. 26, p. 1747-1763.

Davis, D.W., 1992, U-Pb dating of detrital zircon in sediments in the Pontiac and Abitibi subprovinces; preliminary results: Lithoprobe Report, v. 19, p. 33-35.

Davis, D.W., 2002, U-Pb geochronology of Archean metasedimentary rocks in the Pontiac and Abitibi Subprovinces, Quebec, Constraints on timing, provenance and regional tectonics: Precambrian Research, v. 115, p. 97-117.

Deditius, A.P., Utsunomiya, S., Reich, M., Kesler, S.E., Ewing, R.C., Hough, R., and Walshe, J., 2011, Trace metal nanoparticles in pyrite: Ore Geology Reviews, v. 42, p. 32-46.

Deditius, A.P., Reich, M., Kesler, S.E., Utsunomiya, S., Chryssoulis, S.L., Walshe, J., and Ewing, R.C., 2014, The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits: Geochemica et Cosmochimica. Acta, v.140, p. 644-670.

De Souza, S., Dubé, B., McNicoll, V.J., Dupuis, C., Mercier-Langevin, P., Creaser, R.A., and Kjarsgaard, I.M., 2015, Geology, hydrothermal alteration, and genesis of the worldclass Canadian Malartic stockwork-disseminated Archean gold deposit, Abitibi, Quebec, In B. Dubé B., and Mercier-Langevin P., ed., Targeted Geoscience Initiative 4: Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration, Geological Survey of Canada, Open File 7852, p. 113126.

De Souza, S., Dubé, B., McNicoll, V.J., Dupuis, C., Mercier-Langevin, P., Creaser, R.A., and Kjarsgaard, I.M., 2016, Geology and hydrothermal alteration of the world-class Canadian Malartic gold deposit, genesis of an Archean stockwork-disseminated gold deposit in the Abitibi greenstone belt, Quebec: Reviews in Economic Geology, v. 19, p. 1-000.

Derry, D.R., 1939, The geology of the Canadian Malartic gold mine, Quebec: Economic Geology, v. 34, p. 495-523.

Desrochers, J.P., and Hubert, C., 1996, Structural evolution and early accretion of the Archean Malartic composite block, southern Abitibi greenstone belt, Quebec, Canada: Canadian Journal of Earth Sciences, v. 33, p. 1556-1569.

Dimroth, E., Imreh, L., Goulet, N., and Rocheleau, M., 1983, Evolution of the south-central segment of the Archean Abitibi Belt, Quebec: Canadian Journal of Earth Sciences, v. 20, p. 1374-1388.

Eakins, P.R., 1962, Geological settings of the gold deposits of Malartic district, Abitibi east county, Québec: Department of Natural Resources, Geological Report 99, p. 155.

Fallara, F., Ross, P.S., and Sansfaçon, R., 2000, Caractérisation géochimique, pétrographique et structural, nouveau modèle métalloginique du camp minier de Malartic: Québec: Ministère des Ressources Naturelles, v. 2000-15, p. 155.

Gao, J.-F., Jackson, S.E., Dubé, B., Kontak, D.J., and De Souza, S., 2015, Genesis of the Canadian Malartic, Côté Gold, and Musselwhite gold deposits, in Insights from LA-ICP-MS element mapping of pyrite, in Dubé B. and Mercier-Langevin P., ed., Targeted Geoscience Initiative Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration: Geological Survey of Canada, Open File 7852, p. 157-175.

Gunning, J., and Ambrose, H., 1940, Malartic area, Quebec: Geological Survey of Canada Memoir 222, p. 142.

Helt, K., Williams-Jones, A., Clark, J., Wing, B., and Wares, R., 2014, Constraints on the genesis of the Archean oxidized, intrusion-related Canadian-Malartic gold deposit, Quebec, Canada: Economic Geology, v. 109, p. 713-735.

Perrouty, S., Gaillard, N., Piette-Lauziere, N., Mir, R., Bardoux, M., Olivo, G.R, Linnen, R.L., Bérube, C.L., Lypaczewski, P., Guilmette, C., and Feltrin, L., 2017, Structural setting for Canadian Malartic style of gold mineralization in the Pontiac Subprovince,
south of the Cadillac Larder Lake Deformation Zone, Quebec, Canada: Ore Geology Reviews, v. 84, p. 185-201.

Powell, W.G., Carmichael., D.M., and Hodgson, C.J., 1995, Conditions and timing of metamorphism in the southern Abitibi greenstone belt, Quebec: Canadian Journal of Earth Sciences, v. 32, p. 787-805.

Putnis, A., Fernandez-Diaz, L., and Prieto, M., 1992, Experimentally produced oscillatory zoning in the ($\mathrm{Ba}, \mathrm{Sr}) \mathrm{SO}_{4}$ solid solution: Nature, v. 358 , p. 743-745.

Reich M., Kesler, S.E., Utsunomiya S., Palenik, C.S., Chryssoulis, S.L. and Ewing R.C., 2005, Solubility of gold in arsenian pyrite: Geochimica et Cosmochimica. Acta, v. 69, p. 2781-2796.

Robert., F., 2001, Syenite-associated disseminated gold deposits in the Abitibi greenstone belt, Canada: Mineralium Deposita, v. 36, p. 503-516.

Sansfaçon, R., 1986, The Malartic district, in Hubert, C., and Robert, F., eds., CanadaMineralogical Association of Canada-Canadian Geophysical Union Joint Annual Meeting, Field Trip 14 Guidebook, Structure and gold, Rouyn to Val d'Or, Quebec, p. 27-41.

Sansfaçon, R., and Hubert, C., 1990, The Malartic Gold District, Abitibi greenstone belt, Québec: Geological setting, structure and timing of gold emplacement Barnat, EastMalartic, Canadian Malartic and Sladen Mines, in Rive, M., and Verpaelst, P., eds., The northwestern Quebec polymetallic belt: A summary of 60 years of mining exploration: Canadian Institute of Mining and Metallurgy, Special Volume 43, p. 221-235.

Schumacher, R., Rotzler, K., and Maresch, W.V., 1998, Subtle oscillatory zoning in garnet from regional metamorphic phyllites and mica schists, Western Erzgebirge, Germany: The Canadian Mineralogist, v. 37, p. 381-402.

Wares, R. and Burzynski, J., 2012, The Canadian Malartic Mine, Southern Abitibi belt, Quebec, Canada: Discovery and Development of an Archean Bulk-Tonnage Gold Deposit, Montreal: Osisko Mining Corporation.

Willner, A.P., Pawlig, S., Massonne, H.J., and Herve, F., 2001, Metamorphic evolution of spessartine quartzites (coticules) in the high-pressure, low-temperature complex at Bahia Mansa, Coastal Cordillera of South-Central Chile: The Canadian Mineralogist, v. 39, p. 1547-1569.

Zacharias, J., Fryda, J., Paterova, B., and Mihaljevic, M., 2016, Arsenopyrite and As-bearing pyrite from the Roudny deposit, Bohemian Massif: Mineralogical Magazine, v. 68, p. 31-46.

Appendix A: Outcrop Observations

Vein Mapping observations at outcrop locations

X Coordinat e	\mathbf{Y} Coordinat e	Sediment	$\begin{aligned} & \hline \text { S2 } \\ & \mathrm{Fol}^{\mathrm{n}} \end{aligned}$	Vein Count	$\begin{aligned} & \text { Vein } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Fol }^{\mathbf{n}} \\ & \text { Rela }^{\mathbf{n}} \end{aligned}$	Mineralo gy	Oxidati on	VP in vein	Extra Info
712600	5335221	Small outcrop, sediment is light grey	310°, beddi ng at 262°	75 cm outcrop ($<1 \mathrm{~mm}=$ 3) (1$5 \mathrm{~mm}=3$) ($>5 \mathrm{~mm}=$ 0)	1	cut by foliation - older	granular quartz and feldspar with bands of amphibole within. There is also an alteration halo of feldspar and amphibole along the sides	Present	Yes	good for sampling, amphiboles are randomly oriented, slightly folded starting parallel to bedding then bends slightly towards 293°. A second vein is trends approx 318°
					2	cut by foliation - older	granular quartz and feldspar. More feldspar in this vein type	Present	Yes (black oxidized mineral)	slightly folded, trending generally towards 293°

										compared to 1.

					2	cut by foliation - older	quartz and feldspar	Present	Yes. Associate d with disseminat ed pyrite surroundi ng	veinlets cutting into 1 so younger than 1 but older than foliation. Associated with disseminated pyrite. Trending 352
			\|		3	cut by foliation - older	granular quartz and feldspar	Present	Yes.	Probably not associated with the disseminated pyrite in the sediment. Veinlets are cut by 1 so older than 1. trending 202.
			\|		4	cut by foliation - older	quartz and feldspar	Not visible	No.	very large vein but hard to tell composition and oxidation as the vein appears to sit "underneath" the sediment. Need saw to

										this vein. Slightly folded and generally trending 275°

710897	5336326	patchy visibility of outcrop due to vegetation	foliati on chang es betwe en 320° to 350°	1.5m outcrop (<1mm= 0) (1$5 \mathrm{~mm}=1$) ($>5 \mathrm{~mm}=$ 2)	1	cut by foliation - older	granular quartz with feldspar	Oxidize d through out	No	folded, trending approximatel y 295° with bends at 258°
					2	cut by foliation - older	composed of granular quartz with feldspar along the sides of the vein (alteration halo?)	Present	No	also cut by 1 so older than 1 too. Very folded and experienced high strain. There is disseminated pyrite in the sediment surrounding this vein. One vein with hinge axis at 250°, other trending 220° to 250°

			ely the Northern and Southern end and doesn't apper to correlate with a particular vein.						

710645	5336703	outcrop is more continuous here than previous outcrop. Sediment is the same with disseminate d pyrite in the sediment	303°	1.5m outcrop ($<1 \mathrm{~mm}=$ 2) (1- $5 \mathrm{~mm}=3$) ($>5 \mathrm{~mm}=$ 1)	1	cut by foliation - older	granular quartz	patchy oxidatio n	Yes	Holes in vein from pyrite?, trending 242°. Large disseminated pyrite within the sediment.
					2	cut by foliation - older	granular quartz and feldspar	Present	Yes	thin veinlets, not as muct ruse throughout but have many oxidized sulphide grains. Disseminated pryite exist in the surrounding sediment as well.

					3	cuts foliation younger than foliation	granular quartz	No	No	trending 296°, thin veinlets
					4	cut by foliation - older	quartz and feldspar	Present	Yes	parallel to foliation.
					5	cuts foliation younger than foliation	quartz and feldspar	No	No	
710527	5336865	sediment is light grey, large outcrop. Disseminat ed pyrite throughou t	310°	1.5m outcrop ($<1 \mathrm{~mm}=$ 8) (1$5 \mathrm{~mm}=5$) ($>5 \mathrm{~mm}=$ 1)	1	cuts foliation younger than foliation	granular quartz	No	No	trending 325°
					2	cut by foliation - older	granular quartz and feldspar	Present	Yes	Holes in vein from pyrite?, parallel to 1 . slightly folded
					3	cut by foliation - older	granular quartz	Present	Yes. LOTS.	trending 250°, pretty straight

					4	younger	quartz	No	No	trending 286°
710085	5337376	sediment is light grey and brown (due to fe oxidation) beds with some alternating between dark beds (inc biotite) are folded with hinge axis trending parallel to foliation. Disseminat ed pyrite found within sediment. Approxima tely 100 m from here is an outcrop where the pyrite crystals are growing	$303{ }^{\circ}$	1.5m outcrop ($<1 \mathrm{~mm}=$ 0) (1- $5 \mathrm{~mm}=3$) (>5mm= 4)	1	cut by foliation - older. Cut by fractures along foliation.	granular quartz and feldspar	Present	Yes	most abundant. Trending 240°. Then refracts towards 226°. Some pyrite grains as large as 5 mm .

		parallel to the foliation (elongated towards direction of foliation)							

										difficult to tell relations hip with foliation

									h". Checked with chisel.	

709157	5337863	sediment is light grey, late generation veins are present. Disseminat ed pyrite is present	313°	150 cm outcrop (<1mm= 2) (1- $5 \mathrm{~mm}=2$) ($>5 \mathrm{~mm}=$ 3)	1	cut by foliation - older	granular quartz	Heavily Oxidize d	Lots of VP, and disseminat ed pyrite in surroundi ng sediment	trending 298°, thin veinlet
					2	cut by foliation - older	too small to tell mineralog y	Heavily Oxidize d	No, but there is disseminat ed pyrite in surroundi ng sediment	parallel to 1. thin veinlets, need thin section to tell
					3	cut by foliation - older	granular quartz in the center with feldspar along the sides	Present	Yes. Dissemina ted pyrite also found in sediment surroundi ng vein	trending 290°, boudinaged.
					4	cut by foliation - older	recrystalli zed quartz with little feldspar along the sides	Heavily Oxidize d	1 or 2 VP grains	boudinaged, trending 303°

					3	cut by foliation - older	unknown compositi on, thin veinlet	Heavily Oxidize d	No	folded, hinge axis at 270°
708239	5337450	sediment is light grey, late generation veins are present	304°	150 cm outcrop ($<1 \mathrm{~mm}=$ 0) (1- $5 \mathrm{~mm}=2$) ($>5 \mathrm{~mm}=$ 1)	1	cut by foliation - older (maybe same age since it is also parallel foliation	granular quartz with some feldspar	Heavily Oxidize d	No	boudinaged parallel to foliation
					2	cut by foliation - older	largely feldspar, some quartz	patchy oxidatio n	No	less competent than 1. "branches out" into multiple parallel veins, many holes where pyrite could have been, trending 320°
					3	cut by foliation - older	granular quartz	Heavily Oxidize d	No	trending 315°

							band on each side			
708074	5336923	sediment is light grey, patches of brown due to Fe oxidation.	316°	75 cm outcrop (<1mm= 0) (1- $5 \mathrm{~mm}=0$) ($>5 \mathrm{~mm}=$ 1)	1	cut by foliation - older	largely feldspar, some quartz, with amphibole s of random orientation within the vein	No	No	thick vein, very folded, parallel to foliation
					2	cut by foliation - older	granular quartz and feldspar	Present	No	thin veins, parallel to foliation
					3	cut by foliation - older	recrystalli zed quartz with little feldspar and biotite within	patchy oxidatio n	Yes	folded, cuts into 1 so younger than 1 but older than foliation

707555	5337015	outcrop we went to with Bob saw folded veins with alteration halo with amphiboles	S2 foliati on is 315°, 2nd foliati on is 340° (can't tell which one came first)	150 cm outcrop (<1mm= 1) (1$5 \mathrm{~mm}=1)$ ($>5 \mathrm{~mm}=$ 2)	1	cut by foliation - older	granular quartz and feldspar with alteration halo of feldspar and amphibole (randomly oriented) along the sides	Oxidize d through out	No	folded with hinge axis parallel to second foliation
					2	cut by foliation - older	granular quartz and some feldspar	patchy oxidatio n	Yes	folded, trending 334°, thin

Appendix B: Sample Information

B1. Outcrop scale observations of the 25 samples collected. Available photos are provided.

$\begin{aligned} & \text { Sample } \\ & \text { ID } \end{aligned}$	Sample ID- Shorten ed	X	Y	Hand Sample	Location	Commen ts	Orientati on
$\begin{aligned} & \text { K38815 } \\ & 2 \end{aligned}$	152	$\begin{aligned} & 714730 \\ & .1 \end{aligned}$	$\begin{aligned} & \hline 533414 \\ & 7.8 \end{aligned}$		Pit	In greywack e, 2 setting: vein A(py) // S2, subtle boudinage , syn D2, vein B cut vein A and S2, late D2, A:0.1-0.5 cm, B:0.2-1 cm, halo of dissemina ted pyrites	N/A

$\begin{aligned} & \text { K38948 } \\ & 8 \end{aligned}$	488	$\begin{aligned} & 714969 \\ & .8 \end{aligned}$	$\begin{aligned} & 533452 \\ & 3.6 \end{aligned}$		Pit	In greywack e, vein(py) // S2, subtle boudinage , syn D2, $0.1-1 \mathrm{~cm}$, halo of dissemina ted py	185/75

$\begin{aligned} & \text { K38949 } \\ & 0 \end{aligned}$	490	$\begin{aligned} & 715010 \\ & .2 \end{aligned}$	$\begin{aligned} & 533459 \\ & 0.8 \end{aligned}$		Pit	In greywack e, en echelon veins(py), syn D2, 1- $2 \mathrm{~cm}, 2$ cm biotite- rich halo	125/90
S-3415A	3415A	714127	$\begin{aligned} & 533459 \\ & 0 \end{aligned}$		Pit	In greywack e, vein(py) // S2, 0.1-2 cm, 2-3 cm alteration halo with dissemina ted pyrites	N/A

$\begin{aligned} & \text { K38948 } \\ & 7 \end{aligned}$	487	714970	$\begin{aligned} & 533450 \\ & 4 \end{aligned}$		Pit	In greywack $e, v e i n(p y)$ cutted by S2, 0.5-2 cm, subtle boudinag e, early to $\operatorname{syn} D 2$, halo of dissemina ted py	010/90
$\begin{aligned} & \text { K38815 } \\ & 3 \end{aligned}$	153	$\begin{aligned} & 713549 \\ & .8 \end{aligned}$	$\begin{aligned} & 533274 \\ & 7.4 \end{aligned}$		Transect NESW	In greywack e, S2 // vein(py), chlorite selvage, subtle boudinage , syn D2, $0.2-1 \mathrm{~cm}$, halo of dissemina ted pyrites	Subvertic al

$\begin{aligned} & \text { K38815 } \\ & 4 \end{aligned}$	154	$\begin{aligned} & 713314 \\ & .6 \end{aligned}$	$\begin{aligned} & \hline 533398 \\ & 2.7 \\ & \hline \end{aligned}$		Transect NESW	In greywack e, vein(py) or POR, subtle boudinage , syn D2, 0.2-10 cm, halo of dissemina ted pyrites	N/A
$\begin{aligned} & \text { K38815 } \\ & 9 \end{aligned}$	159	$\begin{aligned} & 713052 \\ & .1 \end{aligned}$	$\begin{aligned} & 533199 \\ & 41 \end{aligned}$	$3 \mathrm{~cm}$	Transect NESW	In garnetbearing greywack e, vein(py) cutted by S2 and folded, early D2, $0.2-5 \mathrm{~cm}$	N/A

$\begin{aligned} & \text { K38816 } \\ & 2 \end{aligned}$	162	$\begin{aligned} & 713314 \\ & .6 \end{aligned}$	533398		Transect NESW	In greywack e, 2 setting: veinA(py) cutted by S2, subtle boudinage , syn D2, vein B // S2 cut vein A, late D2, A:0.5-2 cm, B:0.1-0.2 cm, halo of dissemina ted pyrites	N/A

$\begin{aligned} & \text { K38816 } \\ & \text { 4B } \end{aligned}$	164B	712890	$\begin{aligned} & 533150 \\ & 0.2 \end{aligned}$	$\operatorname{mimim}_{104} \text { II } 1811$ 388164	Transect NESW	In garnetbearing greywack $e, \operatorname{vein}(p y)$ cutted by $S 2$ and folded (isoclinna l), early D2, 0.2-1 cm	Subvertic al
$\begin{aligned} & \text { K38988 } \\ & \text { 6B } \end{aligned}$	886B	712930	$\begin{aligned} & 533276 \\ & 0 \end{aligned}$		Transect NESW	In greywack e, vein(py), subtle boudinage , syn D2, $0.5-2 \mathrm{~cm}$, halo of dissemina ted pyrites	125/90

$\begin{aligned} & \text { K38988 } \\ & \text { 8B } \end{aligned}$	888B	712024	$\begin{aligned} & 533176 \\ & 4 \end{aligned}$		Transect NESW	In garnetbearing greywack e, vein(py) cutted by S2, boudinage , syn D2, $0.5-1 \mathrm{~cm}$	355/60
$\begin{aligned} & \text { K38816 } \\ & \text { 8A } \end{aligned}$	168A	712350	$\begin{aligned} & \hline 533477 \\ & 0 \end{aligned}$		Transect NW-SE	In greywack e, vein(py), boudinage , syn D2, $0.5-3 \mathrm{~cm}$, halo of dissemina ted pyrites	130/90

$\begin{aligned} & \text { K38817 } \\ & \text { 1B } \end{aligned}$	171B	711510	$\begin{aligned} & 533604 \\ & 3 \end{aligned}$		Transect NW-SE	In greywack e, vein(py), subtle boudinage , syn D2, $0.5-1 \mathrm{~cm}$, halo of dissemina ted pyrites	160/90
$\begin{aligned} & \text { K38817 } \\ & 3 \end{aligned}$	173	712611	$\begin{aligned} & 533522 \\ & 2 \end{aligned}$		Transect NW-SE	In greywack e, vein(py) // S2, subtle boudinage , syn D2, $0.5-1 \mathrm{~cm}$, halo of dissemina ted pyrites	115/90
$\begin{aligned} & \text { K38976 } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { NB061 } \\ & \text { R } \end{aligned}$	$\begin{aligned} & 710780 \\ & .3 \end{aligned}$	$\begin{aligned} & \hline 533669 \\ & 5.6 \end{aligned}$		Transect NW-SE	In greywack e, conjugate veins(py) cutted by $S 2$ and folded,	$\begin{aligned} & 140 / 90 \\ & 180 / 90 \end{aligned}$

						boudinag e, early D2, 0.10.5 cm , pyrite with synD2 pressure shadows, halo of dissemina ted pyrites	
$\begin{aligned} & \text { K38976 } \\ & 4 \end{aligned}$	NB064	$\begin{aligned} & 710752 \\ & .5 \end{aligned}$	$\begin{aligned} & 533665 \\ & 1.1 \end{aligned}$		Transect NW-SE	In greywack e, "milkywhite" vein(py), subtle boudinag e, folded, early to syn D2, 0.5-200 cm, pyrrhotite in biotiterich layers in greywack es	N/A

$\begin{aligned} & \text { K38976 } \\ & 8 \end{aligned}$	NB068	$\begin{array}{\|l} \hline 710775 \\ .1 \end{array}$	533664		Transect NW-SE	In greywack e, 2 setting: vein A(py) cutted by S2, subtle boudinage , syn D2, vein B cut vein A and S2, late D2, A:0.1-0.5 cm , B:0.2-1 cm	A: 065/90 B: 130/25
$\begin{aligned} & \text { K38983 } \\ & 5 \end{aligned}$	NB036	$\begin{array}{\|l\|} \hline 710819 \\ .6 \end{array}$	$\begin{aligned} & 533667 \\ & 0.3 \end{aligned}$		Transect NW-SE	In greywack e, vein(py), pyrite selvage, boudinage , syn D2, $0.5-1 \mathrm{~cm}$, halo of dissemina ted pyrites	N/A

$\begin{aligned} & \text { K38989 } \\ & \text { 5B } \end{aligned}$	895B	708294	$\begin{aligned} & 533813 \\ & 2 \end{aligned}$		Transect NW-SE	In greywack e, vein(py) cutted by S2, subtle boudinage , syn D2, $0.2-1 \mathrm{~cm}$, halo of dissemina ted pyrites	160/50
$\begin{aligned} & \hline \text { K38989 } \\ & \text { 7A } \end{aligned}$	897A	708958	$\begin{aligned} & 533785 \\ & 8 \end{aligned}$		Transect NW-SE	In greywack e, vein(py) // S2, subtle boudinage , syn D2, 1-2 cm, chlorite, halo of dissemina ted pyrites	120/90

$\begin{aligned} & \text { K38989 } \\ & \text { 8A } \end{aligned}$	898A	709668	$\begin{aligned} & \hline 533773 \\ & 8 \end{aligned}$		Transect NW-SE	In greywack e, vein(py) // S2, syn D2, 0.1- 0.2 cm , halo of dissemina ted pyrites	175/90
$\begin{aligned} & \hline \text { K38989 } \\ & 9 \mathrm{~A} \end{aligned}$	899A	710077	$\begin{aligned} & 533736 \\ & 1 \end{aligned}$		Transect NW-SE	In greywack e, vein(py) // S2, subtle boudinage , syn D2, $1-2 \mathrm{~cm}$, halo of dissemina ted pyrites	120/90

B2. Thin section photos of the 25 samples collected. Grains chosen for EPMA and/or LA ICP-MS analyses are circled

171B	

NB064

NB036	

Appendix C: Petrography Observations

Slide 152 - Pit

General Observations:

Mineral	Grain size	Grain shape	Composition
Pyrite	500um-100um	Euhedral	15%
Biotite	200um to a few are microns in size	Subhedral to bladed	28%
Quartz	700 um to submicron	Subhedral to anhedral	32%
Calcite-Dolomite?	Generally 200um- 50um, to a few microns in size	Anhedral	4%
Albite	100um-50um	Anhedral	1%
K feldspar	100um -50um	anhedral	Trace amount
Muscovite	Less than 20 um to submicron	Bladed	20%
Rutile	100um	Anhedral	Trace amount
Chalcopyrite	submicron	anhedral	Trace amount
Galena	A few microns to submicron	anhedral	Trace
REE phosphate - Monazite	A few microns	anhedral	Trace
Telluride mineral inclusion (Au, Ag and Ni)	A few microns	anhedral	trace
Scheelite	A few microns	anhedral	trace

- Orthoclase also contains fluid inclusions within
- Vein selvage has strong concentration of large grained biotite
- Decrease in concentration of biotite away from vein also in grain size
- Disseminated pyrite grains are found within the host rock
- Pyrite grains are larger within the vein compared to the host rock and surrounding alteration assemblage
- Grains are euhedral
- Thick biotite rims along the vein selvages - higher concentration around the selvage and then decreases away from the vein
- Finer grained host rock (100um to submicron in size) with larger grains of pyrite and biotite.
- 2 directions of foliation. 1 direction of foliation is the majority of the slide. The other foliation appears to be associated with the youngest veins which cross cuts the dominant foliation of S2.
- The rutile grains can be found along the sides of the pyrite within the vein as well as alone within the vein
- Host rock changes. The host rock near the youngest thick vein contains more plagioclase and quartz. The host rock near the older thinner vein contains much finer material.
- Biotite grains are bladed to anhedral in the dominant (S2) foliation as they are cut and deformed slightly by the older foliation. The grains are more bladed and less anhedral in the younger foliation. The younger foliation's biotite grains are also larger (200um to submicron in size) whereas the older (S2) foliation associated biotite grains are more 100 um to submicron in size.
- The biotite grains are very concentrated around the youngest vein's selvages as the younger foliation appears to overprint the existing dominant foliation. This becomes less concentrated away from the vein and the dominant foliation resumes.
- The quartz grains are very anhedral
- Muscovite within the host rock as well
- Thickest: Cuts dominant foliation - younger than dominant foliation.
- Cuts into the mid-sized veins. Older than mid-sized veins.
- The quartz grains vary in size but are generally much larger in this vein (approximately 700um) compared to the other veins which shows that it is less deformed (and younger) than the other veins. The grains have many fractures within each grain (From undergoing metamorphism?)
- Largest vein has fewest pyrite grains (approximately 50um)
- The second direction of foliation is associated with this vein. It only surrounds this particular vein's selvages. The biotite grains associated with this foliation are larger (some even 250um long) cut across the biotite grains associated with the dominant foliation.
- Not a vein of interest
- Thinner vein vein: parallel to dominant foliation and the main vein of focus within this slide.
- Contains the largest pyrite grains - 500um - generally 500-100um.
- Vein of interest
- Since this foliation is appears to be formed within the same event as this vein which is also associated with the largest pyrite grains, it appears that this foliation may be the S 2 foliation. The other foliation is associated with the younger vein appears to carry very little pyrite so it appears that it may not be the vein of interest, nor the foliation of interest.
- Pyrite grains contain quartz and biotite inclusions, these grains
- These grains are more corroded - more marks along the surface

Thinner vein:

Mineral	Grain size	Grain shape	Composition
Pyrite	500um-100um	Euhedral	10%
Biotite	Generally 50um	Bladed to anhedral	15%
Quartz	Generally 200um- 50um, a few are microns in size	Subhedral to anhedral	39%
Rutile	100um	Anhedral	trace
Albite	100 um	anhedral	3%
K feldspar	50 um	anhedral	1%
Calcite	Generally 200um- 50 am, to a few microns in size	Anhedral	30%
Iron oxide	50um to submicron	anhedral	2%
Chalcopyrite	A few microns in size	Anhedral	Trace amount
Galena	A few microns to submicron	anhedral	Trace
REE phosphate - Monazite	A few microns	anhedral	Trace
Telluride mineral inclusion (Au, Ag and Ni)	A few microns	anhedral	trace
Scheelite	A few microns	anhedral	trace
Muscovite	A few microns	anhedral	trace

- Pyrite grain inclusions:
- Galena
- Chalcopyrite
- Biotite
- K feldspar
- Quartz
- Monazite
- Au-Ag Telluride mineral
- Ni-Telluride
- Albite
- Muscovite
- There are iron oxide alterations along some of the sides of pyrite grains

Slide 157-Pit

General Observations:

Mineral	Grain size	Grain shape	Composition
Pyrite	500um to a few microns in size	Euhedral to anhedral	11%
Chalcopyrite	100um to submicron	Anhedral	1%
Quartz	200um to submicron	Anhedral	40%
Biotite	Generally less than 50um but can find 200um as well	Subhedral to bladed (finer grains are bladed)	30%
Chlorite	Less than 50um, very anhedral and fractured mostly seen in smaller fragments. Some grains around 100um	Anhedral	3%
Calcite Dolomite	700um to submicron (generally 100um to 50um)	Subhedral to anhedral	4%
Plagioclase	150um to 50um	anhedral	anhedral
K feldspar	150um to 50um	anhedral	Trace amount
Rutile	A few microns	anhedral	Trace
Galena	A few microns	Trace	
Fluorocarbonates	A few microns	anhedral	Trace
Au-Ag Telluride mineral inclusion	A few microns	anhedral	5%

- Overall one direction of foliation (S2) indicated by the direction of elongation of the biotite grains (the S 2 foliation runs the width of the thin section slide)
- Biotite grains are finer here, generally 25 um , but grains can also be 150 um near veins and veinlets.
- Chlorite (pale green with lower than first order white extinction) is also along some of the veins.
- One main vein and many veinlets.
- Some grains of rutile within the vein

Vein:

- Parallel to foliation (biotite grains wrap around the vein's shape)
- This vein contains many large plagioclase grains ($\sim 500 \mathrm{um}$) as well as quartz, calcite, and chlorite
- The grain boundaries within this vein are also difficult to tell as the grains are highly strained and are fractured into smaller pieces.

Vein:

Mineral	Grain size	Grain shape	Composition
Pyrite	500um to 100um, some are a few microns in size (fractured fragments surrounding main grains)	Anhedral	3%
Chalcopyrite	100 um to submicron	Anhedral	2%
Quartz	Generally 200um- 50um, a few are microns in size	Subhedral to anhedral	45%
Calcite	100 um-50um, to a few microns in size	Anhedral	20%
Biotite	200 to 50um	Anhedral	15%
Albite	250um to 50um	Anhedral	10%
K feldspar	250um to 50um	anhedral	5%
Rutile	A few microns	anhedral	Trace amount
Galena	A few microns	anhedral	Trace
Fluorocarbonates	A few microns	anhedral	Trace
Au-Ag Telluride mineral inclusion	A few microns	anhedral	Trace

- Pyrite grain inclusions:
- Au-Ag Telluride mineral
- Chlorite
- Quartz
- REE Fluorocarbonate mineral
- The pyrite grains are associated with chalcopyrite.
- Large biotite grains and chlorite wrapping around the quartz and carbonate grains within the vein.
- Biotite normally fine grained along this slide but here they are coarse (approximately 200um to 50 um)
- Chlorite between the pyrite grain fragments
- The pyrite grains have holes within the pyrite

Slide 3415A -Pit

General Observations:

Mineral	Grainsize	Grain shape	Composition
Pyrite	1 mm to submicron, generally larger in the vein/veinlets	Euhedral to anhedral	10\%
Plagioclase	100um to 25um	anhedral	10\%
Quartz	100um to submicron	anhedral	35\%
Biotite	250um to submicron	Subhedral to anhedral	18\%
Chlorite	500um to submicorn	anhedral	4\%
Calcite	500um to submicron	anhedral	10\%
Muscovite	200um	subhedral	3\%
Mg-rich baguette chlorite	$\sim 50 \mathrm{um}$	bladed	2\%
Chalcopyrite	A few microns	anhedral	Trace amounts (inclusions) within pyrite
$\mathrm{Ag}-\mathrm{Au}$ telluride mineral	10-20um	anhedral	trace
Galena	2-40um	anhedral	trace
Albite	A few um	anhedral	trace
K feldspar	A few um	anhedral	trace
Rutile	A few microns	anhedral	trace
Titanite	A few microns	anhedral	trace
Zircon	A few microns	anhedral	trace
Iron oxide	submicron	anhedral	trace

- There is a thick accumulation ($\sim 500 \mathrm{um}$ thick) of large biotite grains at the vein selvage, just outside it reduced concentration - very little biotite until much further form the vein where the biotite tends to reappear
- The carbonate is only found within the vein within a host rock of predominantly quartz and biotite. Vein is parallel to foliation
- The biotite isn't consistently dispersed along the thin section. The larger grains are more concentrated around the vein`s selvages The smaller grains are found within the host rock and are only a few microns to submicron in size.
- The pyrite grains are much larger within the vein but are finer within the host rock less than 80um.
- The vein selvages have coarser grained biotite compared to the host rock. Thick biotite rims mixed with patches of carbonate minerals in between,

Vein:

Mineral	Grainsize	Grain shape	Composition
Pyrite	1 mm to 25um	Euhedral to anhedral	15%
Quartz	50um to submicron	anhedral	3%
Biotite	250 um to submicron	Subhedral to anhedral	15%
Chlorite	500 um to submicorn	anhedral	5%
Calcite	500um to submicron	anhedral	57%
Muscovite	200um	subhedral	3%
Mg-rich baguette chlorite	~ 50 um	bladed	2%
Chalcopyrite	A few microns	anhedral	Trace amounts (inclusions) within pyrite
Ag-Au telluride mineral	10-20um	anhedral	trace
Galena	2-40um	anhedral	trace
Albite	A few um	anhedral	trace
K feldspar	A few um	anhedral	trace
Rutile	A few microns	anhedral	trace
Titanite	A few microns	anhedral	trace
Zircon	A few microns	anhedral	trace
Iron oxide	submicron	anhedral	trace

- Pyrite inclusions:
- Chalcopyrite
- Au-Ag Telluride mineral
- Galena
- K feldspar
- Ag-Telluride mineral
- Albite
- Calcite
- Quartz
- Biotite
- High concentration of carbonate grains within the vein
- The biotite grains wrap around the veins, these grains very widely in size.
- The carbonate grains are highly anhedral
- There seems to be more of a bimodal distribution of quartz within the host rock as there are coarse quartz grains and a fine quartz matrix.

Slide 487 -Pit

Mineral	Grainsize	Grain shape	Composition
Pyrite	200um to submicron	Subhedral to Anhedral	7%
Chalcopyrite	50 um to a few microns	Subhedral to Anhedral	Trace amount
Quartz	1 mm to 50um	Subhedral to Anhedral	36%
Biotite	200um to submicron	Subhedral to Anhedral	25%
Carbonate	200um to submicron	Anhedral	10%
Rutile	50 um to submicron	Anhedral	2%
Chlorite	1mm to submicron	Anhedral	2%
Albite	200um to 50um	anhedral	2%
K feldspar	$100-50$ um	Anhedral	1%
Muscovite	Generally a few microns to submicron, some are less than 20um	anhedral	15%
galena	A few microns	anhedral	trace
barite	A few microns	anhedral	trace

- Vein selvage has greater accumulation of large grained biotite but less concentrated overall in smaller grained biotite like the host rock
- Host rock is largely fined grained quartz, muscovite, carbonate and biotite. There are also larger quartz grains within which are approximately $1-2 \mathrm{~mm}$
- Muscovite is highly birefringent with basal cleavage and not pleochroic
- The foliation runs along the width of the slide.
- The vein within the center is older than the foliation as the biotite veins of the foliation wrap around the sides of the vein.
- The vein also branches out on either side.
- The veinlets in this thin section do not contain pyrite and are not a vein of interest

Veinlets:

- These veins contain no pyrite
- The veins are predominately carbonate with some smaller quartz grains
- 70% carbonate
- 25% quartz
- 5% Chlorite along the veinlet selvages

Main Vein and branches:

Mineral	Grainsize	Grain shape	Composition
Pyrite	1 mm and 100um	Anhedral and Euhedral	3%
Chalcopyrite	50 um	Anhedral	Trace amount
Quartz	1 mm to 50um	Subhedral	70%
Albite	200 um to 50um	anhedral	2%
K feldspar	$100-50 \mathrm{um}$	Anhedral	1%
Biotite	100 um to a few microns	Anhedral	5%
Carbonate	4mm to 50um	Anhedral	22%
galena	A few microns	anhedral	trace
barite	A few microns	anhedral	trace

- Pyrite inclusions:
- Galena
- Chalcopyrite
- Quartz
- Biotite
- There is one large pyrite within the vein and a smaller one approximately 100um in size

Slide 153-NE-SW Transect

General Observations:

Mineral	Grainsize	Grain shape	Composition
Pyrite	150 um to submicron	Subhedral to anhedral	4%
Quartz	1 1mm to a few microns	Anhedral	39%
Pyrrhotite	500 umm	anhedral	1%
Albite	100 um to 1mm	anhedral	10%
K feldspar	50 um to 500um	anhedral	5%
Pentlandite	50 um to a few microns	anhedral	Trace amount
Biotite	2mm to a few microns	Bladed to anhedral	27%
Chlorite	1mm to submicron	Anhedral	7%
Calcite	500 um to submicron	Anhedral	5%
Rutile	50um to submicron	anhedral	trace
Chalcopyrite	submicron	anhedral	Trace amount
Iron oxide	250um to a few microns	anhedral	Trace amount
Galena	A few microns	anhedral	Trace
Bi-Co-telluride mineral	submicron	anhedral	Trace
Arsenopyrite	A fewmicrons	anhedral	trace
Molybdenite	A few microns	anhedral	trace

- Biotite grains at the vein selvage, within the vein and within the host rock proximal to the vein has altered into chlorite
- All biotite grains are a parallel. Assumed to be along the direction of foliation (S2), which runs down the length of the slide.
- The host rock in this thin section has undergone deformation. Not only are the biotite grains indicating the foliation direction but even the quartz grains in the host rock as the minerals are all elongated along this direction.
- It appears that the quartz within the host rock has recrystallized as there are bulges along the grain boundaries.
- The quartz grains within the vein do not appear to be heavily deformed along the foliation (larger grains, since it is quartz it probably requires much more to deform it like the biotite, carbonate and the smaller quartz grains). There are some deformed grains where the boundaries are a bit rough and fractured
- The carbonate grains appear to be deformed (grains seem to orient themselves along a line running along the foliation direction and they appear to be more anhedral in shape with rough and deformed grain boundaries)
- There is some chlorite along the vein selvages as well as within some of the host rock as an alteration product of biotite. Appear within zones of where biotite is concentrated or along the vein selvages.

Veins:

Mineral	Grainsize	Grain shape	Composition
Pyrite	150 um to submicron	Subhedral to anhedral	2%
Quartz	1 mm to a few microns, generally large	Anhedral	35%
Biotite	500 um to a few microns	Bladed to anhedral	8%
Albite	100 um to 1mm	anhedral	15%
K feldspar	50 um to 500um	anhedral	10%
Chlorite	Difficult to tell grain boundary	Anhedral	4%
Calcite-Dolomite	500 um to submicron	Anhedral	15%
Rutile	50 um to submicron	anhedral	1%
Chalcopyrite	submicron	anhedral	10
Iron oxide	250um to a few microns	anhedral	Trace amount
Galena	A few microns	anhedral	Trace
Bi-Co-telluride mineral	submicron	anhedral	Trace
Arsenopyrite	A fewmicrons	anhedral	trace
Molybdenite	A few microns	anhedral	trace

- Pyrite inclusions
- Chalcopyrite
- Arsenopyrite
- Galena
- Bi-Co Telluride mineral

Slide 164B NE-SW Transect

General Observations:

Mineral	Grainsize	Grain shape	Composition
Pyrrhotite	Less than 50um	anhedral	3%
Chalcopyrite	300 um to submicron	Elongated (almost streak-like) and anhedral	1%
Garnet	1.5 mm	anhedral	2%
Quartz	3mm to submicron	anhedral	10%
Biotite	2mm to a few microns in length	Bladed to anhedral	15%
Calcite	Less than 5o um to a few microns	anhedral	2%
Albite	50um to 1mm	Anhedral	43%
K feldspar	300um to 50um	Anhedral	15%
Apatite	200um	anhedral	1%
Epidote	50-250um	anhedral	1%
Muscovite	Generally 50um	Bladed to subhedral	1%
Chlorite	Less than 50um to submicron	anhedral	5%
Galena	A few microns	anhedral	Trace

- Large biotite grains accumulate along the vein selvage
- Biotite alters to chlorite near the vein and within some of the host rock proximal to the vein
- Biotite grains are elongated along the direction of foliation. The grains are fairly long
- The host rock of this thin section seems to be similar to the host rock of the previous slide (153) where the quartz as well as the biotite are strained and elongated along the foliation direction.
- Greater amount of pyrite grains within the host rock than the veins but larger grains within the vein.

Veins:

Mineral	Grainsize	Grain shape	Composition
Pyrrhotite	3mm to submicron	anhedral	5%
Chalcopyrite	300um to submicron	Elongated (almost streak-like) and anhedral	1%
Quartz	3mm to submicron	anhedral	8%
Biotite	50um	Bladed to anhedral	trace
Calcite	A few microns	anhedral	3%
Albite	50um to 1 mm	Anhedral	45%

K feldspar	300um to 50um	Anhedral	29%
Apatite	200 um	anhedral	1%
Epidote	$50-250 \mathrm{um}$	anhedral	1%
Muscovite	Generally 50um	Bladed to subhedral	5%
Chlorite	50 um	anhedral	1%
Galena	A few microns	anhedral	Trace

Slide 154-NE-SW Transect

General Observations:

Mineral	Grainsize	Grain shape	Composition
Pyrite	100um to 70um	Subhedral to anhedral	3%
Quartz	1mm to a few microns	Subhedral to anhedral	44%
Biotite	150um	Anhedral	17%
Muscovite	100 um to submicron	anhedral or bladed	20%
Rutile	200um to a few microns	anhedral	Trace amount
Calcite	1mm to a few microns	anhedral	5%
Hornblende	100um	anhedral	Trace amount
Plagioclase	1mm to 100um	Anhedral	8%
K feldspar	1mm to 100um	Anhedral	3%
Microcline	500um to 100um	anhedral	Trace amount
Chalcopyrite	A few microns	anhedral	Trace amount
fluorocarbonate	A few microns	Anhedral	trace
Fluorite	A few microns	Anhedral	trace
Galena	A few microns	Anhedral	trace
Molybdenite	A few microns	Anhedral	trace

- The vein is older than foliation
- Greater accumulation of biotite grains along vein selvage - no alteration zone
- The vein is within a fine grained host rock of quartz, muscovite and biotite
- More pyrite grains within the host rock and only a few are found within the veins. However the grains within the vein are larger compared to the host rock
- Some of the plagioclase and orthoclase contains many fluid inclusions
- Some of the quartz and orthoclase have muscovite and carbonate inclusions
- Green biotite found here -alteration product of biotite
- Mostly muscovite outside the rocks are also parallel to foliation (biotite alters into muscovite)
- The pyrite also contain biotite and rutile inclusions

Vein:

Mineral	Grainsize	Grain shape	Composition
Pyrite	100 um to 70um	Subhedral to anhedral	2%
Quartz	1 mm to a few microns	Subhedral to anhedral	45%
Biotite	150 um	Anhedral	1%
Calcite	1mm to a few microns	anhedral	10%
Albite	1mm to 100um	Anhedral	25%
K feldspar	1mm to 100um	Anhedral	15%
Chalcopyrite	A few microns	anhedral	Trace amount
fluorocarbonate	A few microns	Anhedral	trace
Fluorite	A few microns	Anhedral	trace
Galena	A few microns	Anhedral	trace
Molybdenite	A few microns	Anhedral	trace

- Pyrite inclusions
- Quartz
- Biotite
- Chalcopyrite
- Albite

Slide 159-Transect NE-SW

General Observations:

Mineral	Grainsize	Grain shape	Composition
Pyrrhotite	1 mm to a few microns	Subhedral to Anhedral	1%
Quartz	200 um	Subhedral to anhedral	36%
Albite	$200 \mathrm{um-1mm}$	Anhedral	25%
Biotite	1.5 mm to 100 generally, some are a few microns	Euhedral to subhedral	20%
Chlorite	1mm to 100um	Subhedral to anhedral	$\% 15$
Calcite	Less than 50 - submicron	anhedral	Trace amount
Garnet	1 mm and 500um	Hexagonal and rounded	1%
Rutile	Less than 50 to a few microns	anhedral	2%
Epidote	A few microns	anhedral	trace

- Older than foliation - grains wrap around vein
- This thin section contains one folded vein in a host rock that is different than the host rocks of the other thin sections of this transect
- Here it is largely quartz and biotite (some plagioclase). The quartz is not as fine grained as the previous slides and the biotite grains are longer as well.
- The folded vein appears to be older than the foliation as the biotite grains wrap around the vein
- Large round grains and hexagonal grains garnet grains within the sample
- The vein is largely plagioclase and quartz (45% and 50%) and biotite (5\%) with some carbonate (trace amounts)
- The grains within the veins are fractured
- Host rock appears to be recrystallized- bulge recrystallization
- All the sulphide minerals here are Pyrrhotite grains

Vein:

Mineral	Grainsize	Grain shape	Composition
Pyrrhotite	1mm to a few microns	Subhedral to Anhedral	5%
Quartz	200 um	Subhedral to anhedral	56%
Albite	$200 \mathrm{um-1mm}$	Anhedral	30%
Biotite	1.5 mm to 100 generally, some are a few microns	Euhedral to subhedral	5%
Chlorite	1mm to 100um	Subhedral to anhedral	3%
Calcite	Less than 50 - submicron	anhedral	Trace amount
Rutile	Less than 50 to a few microns	anhedral	1%
Epidote	A few microns	anhedral	trace

Slide 162 - NE-SW Transect

General Observations:

Mineral	Grainsize	Grain shape	Composition
Pyrite	200um to a few microns	anhedral	1%
Pyrrhotite	250um	anhedral	1%
Pentlandite	A few microns to submicron	anhedral	Trace
Quartz	500um and submicron	Anhedral	47%
Albite	500um to a few microns	anhedral	15%
K feldspar	250um to a few microns	anhedral	5%
Biotite	Largely a few microns but some approx. 250um	Euhedral to anhedral	17%
Hornblende	200um to a few microns	anhedral	10%
Epidote	150um to submicron	anhedral	1%
Calcite	1mm to 200um	anhedral	1%
Iron oxide	100um to submicron	anhedral	Trace amount
Muscovite	100um to 250um	anhedral	2%
Chlorite	A few microns to submicron	subhedral	Trace amount
Ni-Sulphide mineral	A few microns	anhedral	Trace amount
Chalcopyrite	A few microns	anhedral	trace
	ger		

- There are two vein generations within the thin section.
- The older one is cut by the foliation and the second set of veins
- The older one also carries the pyrite grains
- It is shifted as it is cut as well by the younger vein
- The younger ones are veinlets that cut the main older vein as well as the foliation.
- This vein generation is not of interest since it is younger than the foliation
- The host rock is fine grained and rich in quartz, feldspars and biotite
- feldpars contains fluid inclusions, more of them within the host rock
- Hornblende has fluid inclusions as well
- Bimodal distribution of quartz grains
- Greater hornblende concentration within the host rock compared to the vein.

Young Veinlets:

- These veinlets are composed of carbonate, quartz and muscovite

Main Vein:

Mineral	Grainsize	Grain shape	Composition
Pyrite	200um to a few microns	anhedral	1%
Pyrrhotite	250 um	anhedral	1%
Pentlandite	A few microns to submicron	anhedral	Trace
Quartz	500um and submicron	Anhedral	66%
Albite	500um to a few microns	anhedral	20%
K feldspar	250um to a few microns	anhedral	5%
Biotite	Largely a few microns but some approx. 250um	Euhedral to anhedral	5%
Hornblende	200um to a few microns	anhedral	trace\%
Iron oxide	100um to submicron	anhedral	Trace amount
Chlorite	A few microns to submicron	subhedral	1%
Ni-Sulphide mineral	A few microns	anhedral	Trace amount
Chalcopyrite	A few microns	anhedral	1%

- Iron oxide around the pyrite grains
- Ni-S inclusions in the pentlandite
- Grain B is almost all Pyrrhotite and some pentlandite interfingering growths almost. Orientation of pentlandite does not correlate with orientation
- Pyrite inclusions:
- Biotite
- Quartz
- Chlorite

Slide 886B- NE-SW Transect

General Observations:

Mineral	Grainsize	Grain shape	Composition
Pyrite	1mm to a few microns	Anhedral to subhedral	2%
Pyrrhotite	Less than 50um	anhedral	1%
Quartz	1.5 mm to submicron	anhedral	20%
Albite	500um to 100um	Anhedral	35%
K feldspar	250um to 100um	anhedral	6%
Calcite	Less than 50um to a few microns	anhedral	5%
Biotite	2mm to 500um general, also a few microns to submicron	Subehdral to anhedral	12%
Epidote	Less than 50m to a few microns	anhedral	2%
Chlorite	2mm to 500um general, also a few microns to submicron	Subehdral to anhedral	10%
Muscovite	Less than 50m to a few microns	Anhedral to bladed	3%
Hornblende	500um	Subhedral to euhedral	3%
Chalcopyrite	A few microns	anhedral	Trace
Rutile/Titanite	20 am	anhedral	trace
Sphalerite	2um	anhedral	trace
Apatite	$100 u m$ to 50um	anhedral	1%
Molybdenite	A few microns	anhedral	trace

- Hole from pyrite visible (1.5mm, and Subhedral (orthogonal)) a single grain
- Pyrrhotite and Pyrite are both visible within this thin section
- Majority of the large grains are Pyrrhotite and fewer grains of pyrite
- The pyrite grains contain very few inclusions and are only a few microns large
- S2 runs along the length of the thin section
- Large amount of plagioclase within this thin section

Vein:

Mineral	Grainsize	Grain shape	Composition
Pyrite	1 mm to submicorn	Anhedral to subhedral	4%
Pyrrhotite	Less than 50um	anhedral	1%

Quartz	1.5 mm to submicron	anhedral	10%
Albite	500um to 100um	Anhedral	50%
K feldspar	250um to 100um	anhedral	10%
Calcite	Less than 50um to a few microns	anhedral	8%
Biotite	2mm to 500um general, also a few microns to submicron	Subehdral to anhedral	5%
Epidote	Less than 50m to a few microns	anhedral	5%
Chlorite	2mm to 500um general, also a few microns to submicron	Subehdral to anhedral	4%
Muscovite	Less than 50m to a few microns	Anhedral to bladed	3%
Hornblende	500um	Subhedral to euhedral	5%
Chalcopyrite	A few microns	anhedral	Trace
Rutile/Titanite	20um	anhedral	trace
Sphalerite	2um	anhedral	trace
Apatite	100um to 50um	anhedral	1%
Molybdenite	A few microns	anhedral	trace

- Pyrite inclusions
- Albite
- quartz

Slide 888B- NE-SW Transect

General Observations:

Mineral	Grainsize	Grain shape	Composition
Pyrrhotite	Mostly around 100um-50um but one is 2mm and others are less than 50um to submicron	Anhedral	3%
Quartz	2mm to around 25um	anhedral	43%
Albite	1mm to 200um	anhedral	10%
Biotite	Generally 1mm to 200um, some are up to 3mm and some are also a few microns in length	Subhedral to anhedral	18%
Chlorite	500um to 250um	subhedral	2%
Staurolite	1.5mm to 700um	anhedral	2%
Rutile	Less than 100um to a few microns	anhedral	2%
Ilmenite	50um	anhedral	trace

- Majority of sulphide minerals are Pyrrhotite with small pyrite grains that are corroded
- En echelon vein with sigmoidal shape of biotite grains

Host Rock:

- Host rock is not as fine grained (a few microns to 100um here) as most of the host rocks along this transect. Mostly quartz and biotite
- Some host rock quartz grains have biotite inclusions within. Host rock quartz grains are recrystallized

Vein:

- The main vein within the thin section appears to be older or the same age as the foliation - the biotite grains wrap around the vein
- The vein is folded with hinge of folds parallel to S2
- Large quartz and albite grains within the vein (2 mm to 500 um , some are closer to 100um)
- Contains Staurolite within the vein - high relief, low birefringence, colourless to yellow pleochroic.

Mineral	Grainsize	Grain shape	Composition
Pyrrhotite	Mostly around 100 mm-50um but one is 2mm and others are less than 50 um to submicron	Anhedral	15%
Quartz	2mm to around 25um	anhedral	41%
Iron oxide	submicron	anhedral	2%
Albite	1mm to 200um	anhedral	20%
Biotite	Generally 1mm to 200um, some are up to 3mm and some are also a few microns in length	Subhedral to anhedral	20%
Chlorite	500um to 250um	subhedral	1%
Rutile	Less than 100um to a few microns	anhedral	1%

Slide 168A - NW-SE Transect

General Observations:

Mineral	Grainsize	Grain shape	Composition
Pyrite	1mm to a few microns	anhedral	2%
Quartz	4mm to 100um	anhedral	30%
Albite	1 mm to 100um	anhedral	12%
K feldspar	200um to 50um	anhedral	5%
Biotite	Generally 400um to 100um, some are closer to 800um others are much smaller and a few microns to submicron	Bladed euhedral to anhedral	27%
Apatite	1.5 mm and 2mm	Anhedral and euhedral	3%
Muscovite	Generally 400um to 100um, some are closer to $800 u m ~ o t h e r s ~ a r e ~$	Bladed euhedral to anhedral	15%
Chlorite	much smaller and a few microns to submicron	2mm to 50um	Subhedral anhedral
anhedral	3%		
Ilmenite	5alena	A few microns	anhedral
Chalcopyrite	A few microns	anhedral	trace
Trace			

- The foliation generally runs across the length of the slide
- There is one main vein within
- Apatite within the vein
- Unknown high relief, low birefringence, parallel extinction, colourless in PPL

Host Rock:

- It appears that biotite and portions of host rock are cutting into portions of the vein
- Host rock contains portions of finer grained quartz, biotite and some plagioclase

Vein:

- Quartz and Albite grains are very large -4 mm to 1 mm and fractured

Mineral	Grainsize	Grain shape	Composition
Pyrite	1mm to a few microns	anhedral	2%
Quartz	4mm to 100um	anhedral	60%
Albite	1mm to 100um	anhedral	15%
K feldspar	200um to 50um	anhedral	5%
Biotite	Generally 400um to 100um, some are closer to 800um others are much smaller and a few microns to submicron	Bladed euhedral to anhedral	5%
Apatite	1.5mm and 2mm	Anhedral and euhedral	5%
Ilmenite	50-250um	anhedral	5%
Chlorite	2mm to 50um	Subhedral anhedral	3%
Galena	A few microns	anhedral	trace
Chalcopyrite	A few microns	anhedral	trace

- Pyrite inclusion
- Galena
- Chalcopyrite
- Chlorite
- K feldspar
- Albite
- Quartz

Slide 171B - NW-SE Transect

General Observations:

Mineral	Grainsize	Grain shape	Composition
Pyrite	2mm to 1mm mostly, some are around 100um to submicron	Anhedral	4%
Pyrrhotite	100 um	anhedral	1%
Iron oxide	submicron	anhedral	1%
Quartz	1 mm to submicron	Anhedral	52%
Albite	500 um to 250um	anhedral	3%
Muscovite	100 um	Bladed to subhedral	Trace amounts in vein
Biotite	100 um to submicron	Anhedral to bladed	40%
Chlorite	400 to a few microns	anhedral	Trace amount
Rutile	Less than 50um to a few microns	Anhedral	2%
Epidote	50 mm to a few microns	anhedral	Trace
Barite	A few microns	Anhedral	trace
Galena	A few microns	Anhedral	trace

- Biotite alters to chlorite within the vein, at the vein selvage and within host rock proximal to vein
- Accumulation of larger biotite grains at vein selvage
- There are two veins within the thin section, both are parallel to foliation
- One is a veinlet near the top composed entirely of quartz but it contains no pyrite to examine- won't be a vein of interest
- The second vein is a thick vein
- The pyrite grains within this thin section and vein are altered in the edges into iron oxide
- The majority of the pyrite grains are within the vein which is unusual for most of these samples since the host rock tends to have a greater concentration of but smaller pyrite grains.
- Here it appears to be exclusively within the vein

Vein:

Mineral	Grainsize	Grain shape	Composition
Pyrite	2mm to 1 mm mostly, some are around 100um to submicron	Anhedral	8%
Pyrrhotite	100 um	anhedral	1%
Iron oxide	submicron	anhedral	1%
Quartz	1mm to submicron	Anhedral	83%
Albite	500um to 250um	anhedral	5%
Biotite	100 um to submicron	Anhedral to bladed	1%
Rutile	Less than 50um to a few microns	Anhedral	2%
Barite	A few microns	Anhedral	trace
Epidote	50um to a few microns	anhedral	Trace
Galena	A few microns	Anhedral	trace

- Quartz grain size of veins is larger than host rock (1mm-100um)
- Pyrite inclusions
- Quartz
- Chalcopyrite
- Biotite
- Epidote
- Galena

Slide 173 - NW-SE Transect

General Observations:

Mineral	Grainsize	Grain shape	Composition
Pyrite	1 mm to a few microns in size	anhedral	3%
Iron oxide	submicron	anhedral	2%
Chalcopyrite	500um to a few microns	anhedral	1%
Rutile	A few microns in size	Anhedral to bladed	Trace amount
Quartz	1.5 mm	anhedral	42%
Albite	500um	anhedral	4%
Epidote	800um to 100um, some are a few microns in size	anhedral	3%
Biotite	Generally 1.5mm to 100um, some are a few microns to submicron within the host rock matrix	Subhedral to anhedral	32%
Chlorite	300um to 50um	Anhedral	3%
Hornblende	$1.5 m m$ to 100um generally, some a few microns to submicron within the host rock	Anhedral to subhedral	10%
Anhydrite	A few microns	Anhedral	trace
Barite	A few microns	Anhedral	trace
Galena	A few microns	Anhedral	trace
Titanite	A few microns	Anhedral	trace

- Epidote found within the vein as well as along right outside the vein selvage.
- Green to pink in PPL
- High concentration of amphiboles cutting to vein at multiple directions
- Large biotite grains at vein selvage but lower concentration in host rock proximal to vein compared to distal
- Bimodal quartz grain size within the host rock.
- Almost all biotite grains run parallel to foliation
- The hornblende is also mostly parallel to foliation
- Some of the grains seem to cut through the biotite grains
- There are much more and larger biotite and hornblende grains in the host rock further from the veins compared to proximal to the veins
- Foliation runs approximately along the width of the thin section
- It appears that all the veins within this thin section are older than foliation as biotite grains wrap around the vein as well as cut into the vein
- These veins are all parallel to foliation
- Pyrite is altered in edges into iron oxide

Veins:

Mineral	Grainsize	Grain shape	Composition
Pyrite	1 mm to a few microns in size	anhedral	5%
Iron oxide	submicron	anhedral	3%
Chalcopyrite	500um to a few microns	anhedral	1%
Rutile	A few microns in size	Anhedral to bladed	Trace amount
Quartz	1.5 mm	anhedral	69%
Albite	500um	anhedral	2%
Epidote	800um to 100um, some are a few microns in size	anhedral	5%
Biotite	Generally 1.5mm to 100um, some are a few microns to submicron within the host rock matrix	Subhedral to anhedral	2%
Chlorite	300um to 50um	Anhedral	3%
Hornblende	$1.5 m m$ to 100um generally, some a few microns to submicron within the host rock	Anhedral to subhedral	10%
A few microns	Anhedral	trace	
Anhydrite	A few microns	Anhedral	trace
Barite	A few microns	Anhedral	trace
Galena	A few microns	Anhedral	trace
Titanite			

- Pyrite inclusions
- Quartz, Anhydrite, Barite, Galena, Titanite, Epidote, Chalcopyrite

Slide NB061B - NW-SE Transection

General Observations:

Mineral	Grainsize	Grain shape	Composition
Pyrite	Generally 250um, the ones in the vein are 1mm - 500um	Euhedral to subhedral	2%
Iron oxide	Submicron	anhedral	Trace amount
Chalcopyrite	Generally 100- 50um	Subhedral	1%
Epidote	Less than 50um to a few microns	anhedral	15%
Quartz	800um to submicron	anhedral	42%
Albite	1mm	Anhedral	1%
Chlorite	$100 u m$ and smaller, to submicron, some can be up to 1mm	Anhedral, some subhedral	35%
Biotite	100um and smaller, to submicron, some can be up to 1mm	subhedral	3%
Rutile	100um to 150um	Anhedral	1%
titanite	A few microns	anhedral	trace
apatite	250um to a few microns	anhedral	trace
Ilmenite	A few microns	anhedral	trace
Barite	A few microns	anhedral	trace

- It appears that both veins are older than the foliation within the slide
- There is vein with smaller quartz grains (generally 100 um) which is cut by foliation where biotite grains cut across the width of the vein
- Contains no pyrite
- Not a vein of interest
- The larger one which contains large pyrite grains (1mm-500um) contains larger grains of quartz (800 to 100 um) and is also cut by foliation where biotite grains cut into the vein
- Pyrite grains here are altered into iron oxide
- Pyrite grains contain quartz and biotite inclusions
- Biotite grains wrap around the grains - older than foliation
- Rutile is found within the vein but also near the vein selvage as there are blades of rutile almost running parallel to foliation

Mineral	Grainsize	Grain shape	Composition
Pyrite	Generally 250um, the ones in the vein are 1mm - 500um	Euhedral to subhedral	20%
Iron oxide	Submicron	anhedral	Trace amount
Chalcopyrite	Generally 100- 50 um	Subhedral	1%
Epidote	Less than 50um to a few microns	anhedral	1%
Quartz	800um to submicron	anhedral	55%
Albite	1mm	Anhedral	5%
Chlorite	100 um and smaller, to submicron, some can be up to 1mm	Anhedral, some subhedral	15%
Rutile	100um to 150um	Anhedral	1%
titanite	A few microns	anhedral	trace
apatite	250um to a few microns	anhedral	2%
Ilmenite	A few microns	anhedral	trace
Barite	A few microns	anhedral	trace

- Pyrite inclusion
- Ilmenite
- Epidote
- Apatite
- Albite
- Quartz

Slide NB064 - NW-SE Transect

General Observations:

Mineral	Grainsize	Grain shape	Composition
Pyrite			2%
Quartz	200um to a few microns (majority fine)	anhedral	40%
Albite	500um to 100um	Anhedral	8%
K feldspar	500um to 100um	anhedral	2%
Epidote	250 to a few microns	anhedral	1%
Biotite	100um to submicron	Anhedral to bladed	42%
Chlorite	300um to submicorn	anhedral	3%
Rutile	100um and to a few microns generally, grains in the biotite bands are 800um	Generally anhedral to bladed, large grains are subhedral	2%
Chalcopyrite	A few microns	Subhedral	Trace amount
Iron oxide	submicron	anhedral	Trace amount

- Greater concentration of biotite at vein selvage
- There are two directions of biotite elongation here.
- The dominant one is parallel to the vein within the thin section as the biotite grain run parallel to the vein along the selvage and a bit further into the host rock.
- The minor direction is where biotite grains grow over and cut the existing biotite.
- Overall biotite grains appear to be smaller than most -100um and smaller
- There are also high concentrations of biotite within bands in the thin section.
- These bands are closer to the vein
- The quartz grains are not as fine grained as most of the quartz within the host rock. (50um to a few microns in size)
- Rutile found
- Within the host rock - the rutile is found as blades within the host rock in multiple directions of elongation

Vein:

Mineral	Grainsize	Grain shape	Composition
Pyrite			2%
Quartz	200um to a few microns (majority fine)	anhedral	25%
Albite	500um to 100um	Anhedral	25%
K feldspar	500um to 100um	anhedral	8%
Biotite	100um to submicron	Anhedral to bladed	30%
Chlorite	300um to submicorn	anhedral	8%
Rutile	100um and to a few microns generally, grains in the biotite bands are 800um	Generally anhedral to bladed, large grains are subhedral	2%
Chalcopyrite	A few microns	Subhedral	Trace amount
Iron oxide	submicron	anhedral	Trace amount

- Pyrite inclusions
- Muscovite
- Epidote
- Quartz

Slide NB068 - NW-SE Transect

General Observations:

Mineral	Grainsize	Grain shape	Composition
Pyrite	250um to a few microns	Subhedral to anhedral	2%
Iron oxide	submicron	anhedral	Trace amount
Hornblende	A few microns in size	Subhedral to anhedral (initially euhedral due to shadow and alteration)	1%
Albite	1mm to 500um	anhedral	10%
K feldspar	500um to 250um	anhedral	5%
Quartz	400um to a few microns	anhedral	35%
Muscovite	Less than 50um to submicron	Anhedral or bladed	15%
Chlorite	Most are a few microns to submicron, some are 200-100um	Anhedral to subhedral	25%
Biotite	200um to a few microns	anhedral	Trace amount
Rutile	Less than 50um to a few microns in size	Anhedral or bladed	4%
Chalcopyrite	A few microns in size	anhedral	3%
Fluorocarbonate	100 um to a few microns	anhedral	trace
galena	A few microns	anhedral	trace
Titanite	A few microns	anhedral	trace
Ilmenite	A few microns	anhedral	trace
barite	A few microns	anhedral	anal\|

- Greater concentration of large grained chlorite proximal to vein and at vein selvage
- Biotite grains concentrated at vein selvage
- Foliation runs down the length of the slide
- Two vein generations within this slide
- One is younger than the foliation -cross cuts foliation, host rock and older vein
- Contains quartz and plagioclase
- Not a vein of interest
- Older vein is parallel to foliation and appears to be of similar age
- Euhedral pyrite grain - (grain shadow infilled with pyrite)

Vein:

Mineral	Grainsize	Grain shape	Composition
Pyrite	250um to a few microns	Subhedral to anhedral	20%
Iron oxide	submicron	anhedral	Trace amount
Albite	1mm to 500um	anhedral	15%
K feldspar	500um to 250um	anhedral	5%
Quartz	400um to a few microns	anhedral	40%
Chlorite	Most are a few microns to submicron, some are 200-100um	Anhedral to subhedral	20%
Chalcopyrite	A few microns in size	anhedral	trace
Fluorocarbonate	100um to a few microns	anhedral	trace
galena	A few microns	anhedral	trace
Titanite	A few microns	anhedral	trace
Ilmenite	A few microns	anhedral	trace
barite	A few microns	anhedral	trace

- Pyrite inclusion
- Chalcopyrite
- Chlorite
- Titanite
- Ilmenite
- Barite

Slide 895B - NW-SE Transect

General Observations:

Mineral	Grainsize	Grain shape	Composition
Pyrite	2mm to 100um	Euhedral to anhedral	4%
Quartz	1.5 mm to a few microns	anhedral	36%
Albite	500umto 100um	anhedral	15%
K feldspar	250um to 100um	anhedral	5%
Epidote	70um to submicron	anhedral	8%
Iron oxide	submicron	anhedral	Trace amount
Biotite	1mm to 100um generally, some are a few microns	Bladed to anhedral	30%
Ilmenite	150um to submicron	Anhedral	2%
Barite	A few microns	anhedral	trace

- There is one vein within the thin section. It is older than the foliation as it cuts through the vein
- The pyrite grains appeared to be initially euhedral, but the grains are altered into iron oxide
- Host rock has two bimodal quartz grain distribution (200um to a few microns) with larger biotite grains and rutile
- Biotite concentrated at vein selvages
- Disseminated pyrite within the host rock

Vein:

Mineral	Grainsize	Grain shape	Composition
Pyrite	2mm to 100um	Euhedral to anhedral	15%
Quartz	1.5 mm to a few microns	anhedral	40%
Albite	500umto 100um	anhedral	20%
K feldspar	250um to 100um	anhedral	5%
Iron oxide	submicron	anhedral	10%
Biotite	1mm to 100um generally, some are a few microns	Bladed to anhedral	10%
Barite	A few microns	anhedral	trace

- Pyrite inclusions: quartz, barite, calcite

Slide 899A - NW-SE Transect

General Observations:

Mineral	Grainsize	Grain shape	Composition
Pyrite	1 mm to 50um	Subhedral to anhedral	8%
Iron oxide	submicron	anhedral	2%
Quartz	2mm to submicron	Anhedral	25%
Calcite	1mm to submicron	anhedral	5%
Albite	400um to a few microns	anhedral	17%
Chalcopyrite	100 um	Anhedral	Trace amount
Chlorite	400 um to submicron	Anhedral to subhedral	25%
Biotite	100 um to submicron	anhedral	3%
Hornblende	1mm to a 50um	anhedral	15%
Apatite	100um	anhedral	trace
Xenotime	A few microns	anhedral	trace
molybdenite	A few microns	anhedral	trace
Muscovite	A few microns	anhedral	trace
Galena	A few microns	anhedral	trace
titanite	A few microns	anhedral	trace
Pyrrhotite	A few microns	anhedral	trace

- Vein selvage and host rock area proximal to vein has greater concentration of larger grained biotite
- Foliation runs approximately along the length of the slide
- Host rock bimodal distribution with quartz (400um to submicron)
- Hornblende is more concentrated distal to the vein

Vein:

Mineral	Grainsize	Grain shape	Composition
Pyrite	1mm to 50um	Subhedral to anhedral	2%
Iron oxide	submicron	anhedral	2%
Quartz	2mm to submicron	Anhedral	55%
Calcite	1mm to submicron	anhedral	20%
Albite	400 um to a few microns	anhedral	20%
Chalcopyrite	100um	Anhedral	Trace amount
Chlorite	400um to submicron	Anhedral to subhedral	trace
Biotite	100 um to submicron	anhedral	1%
Apatite	100um	anhedral	trace
Xenotime	A few microns	anhedral	trace
molybdenite	A few microns	anhedral	trace
Muscovite	A few microns	anhedral	trace
Galena	A few microns	anhedral	trace
titanite	A few microns	anhedral	trace
Pyrrhotite	A few microns	anhedral	trace

- Pyrite inclusion:
- Galena
- Chlorite
- Quartz
- Chalcopyrite
- titanite

Slide 900 - NW-SE Transect

General Observations:

Mineral	Grainsize	Grain shape	Composition
Pyrite	1 mm to a few microns	Subhedral to anhedral	3%
Iron oxide	submicron	anhedral	1%
Pyrrhotite	200 um	anhedral	1%
Quartz	2mm to a few microns	Anhedral	36%
Calcite	2mm to submicron	Anhedral	5%
Epidote	100 um to submicron	Anhedral	3%
Biotite	1 1mm to a few microns	Subhedral to anhedral	30%
Chalcopyrite	A few microns	Anhedral (v)	Trace
Chlorite	300um	anhedral	Trace amount
Rutile	100 um to submicron	Anhedral	2%
Hornblende	1mm to a few microns	Subhedral to anhedral	20%
Barite	A few microns	Anhedral (v)	Trace

- Host rock contains epidote grains
- There is one vein within the thin section - older than foliation and cut by foliation
- Biotite parallel to foliation
- Host rock bimodal distribution grain size - 300um to submicron
- All the pyrite grains are altered into iron oxide
- Even host rock has corroded and altered pyrite
- Rutile is also found within the host rock - can be from altered pyrite
- Pyrite grains are concentrated within the vein and less within the host rock - also smaller in the host rock
- Different from majority of other thin sections

Vein:

Mineral	Grainsize	Grain shape	Composition
Pyrite	1 mm to a 10um	Subhedral to anhedral	20%
Pyrrhotite	200um	anhedral	1%
Iron oxide	submicron	anhedral	1%
Quartz	2mm to a few microns	Anhedral	44%
Calcite	2mm to submicron	Anhedral	35%
Biotite	A few microns	anhedral	trace
Chalcopyrite	A few microns	anhedral	Trace
Barite	A few microns	Anhedral (v)	Trace

- Pyrite inclusions
- Chalcopyrite
- Quartz
- Pyrrhotite

Slide 898A - NW-SE Transect

Mineral	Grainsize	Grain shape	Composition
Pyrite	2mm to a few microns	Euhedral to anhedral	8%
Quartz	1mm to submicron	Anhedral	35%
Muscovite	Less than 50um to submicron	Bladed to anhedral	10%
Albite	50 to 100um	anhedral	5%
Epidote	A few microns to submicron	anhedral	5%
Biotite	800um to submicron	Subhedral to anhedral	30%
Chlorite	300um to submicron	anhedral	8%
Apatite	50um	anhedral	trace
Barite	A few microns	anhedral	trace
Titanite	A few microns	anhedral	trace
Zircon	A few microns	anhedral	trace

- Epidote found in host rock and vein
- High concentration of large grained biotite at vein selvage
- Biotite alters into chlorite at vein selvage and proximal to vein in host rock

Host Rock:

- The foliations approximately along the width of the thin section
- This is indicated by the finer biotite and muscovite grains within the host rock
- May the large amount of muscovite present within the finer grains within the host rock are formed from altered biotite
- Bimodal distribution of biotite within the rock (200 to 100 um vs $50-25 \mathrm{um}$)
- Fine grained biotite all are parallel to direction of foliation
- Large grains are not parallel, they go in multiple directions
- Composed of biotite (bimodal), muscovite (fine grained), quartz (fine grained), and rutile (fine grained and anhedral

Vein:

Mineral	Grainsize	Grain shape	Composition
Pyrite	2mm to a few microns	Euhedral to anhedral	20%
Quartz	1mm to submicron	Anhedral	40%
Albite	50 to 100um	anhedral	15%
Biotite	800um to submicron	Subhedral to anhedral	10%
Chlorite	300 um to submicron	anhedral	15%
Apatite	50um	anhedral	trace
Barite	A few microns	anhedral	trace
Titanite	A few microns	anhedral	trace
Zircon	A few microns	anhedral	trace

- Pyrite inclusions
- Barite
- Apatite
- Titanite
- Quartz
- The vein is deformed and fragmented by a deformation event associated with the larger grained biotite. These grains cut into the veins as well as wrap around it as well as the pyrite grains
- These biotite grains also face multiple directions and appear to form in "clusters"
- It appears that the foliation occurs after the formation and fragmentation of the veins
- All the fine biotite grains deviate in direction proximal to the vein and wrap around the vein.
- Unlike the large biotite grains, the finer ones all are consistently facing one direction and do not form clusters
- The fine biotite grains also shift in direction between the larger biotite grains as well - indicating that it is younger than the larger biotite as well as the vein
- This foliation is also associated with the fine grained muscovite as they all also trend along that direction
- Square shaped holes within the thin section - may have carried pyrite which had fallen out

Slide 897A - NW-SE Transect

Mineral	Grainsize	Grain shape	Composition
Pyrite	500um to a few microns	anhedral	2%
Pyrrhotite	50 um	anhedral	trace
Pentlandite	10um	anhedral	trace
Iron oxide	submicron	anhedral	Trace amount
Chalcopyrite	A few microns in size	Anhedral	Trace amount
Calcite	1mm to submicron	anhedral	3%
Quartz	800um to submicron	anhedral	46%
Epidote	100 um to submicron	anhedral	15%
Biotite	1.3 mm to submicron	Subhedral to anhedral	24%
Rutile	100 to submicron	anhedral	1%
Actinolite- tremolite	250um to a few microns	acicular	5%
Chlorite	250um to a few microns	anhedral	3%
Ilmenite	A few microns	anhedral	trace
Scheelite	$250 u m ~ t o ~ a ~ f e w ~$ microns	anhedral	1%

Host Rock:

- The host rock also contains carbonate and augite on top of the biotite and quartz
- Larger quartz grains approximately 250 um contain inclusions of muscovite, biotite and fluid inclusions
- Bimodal distribution of quartz 400 um to submicron

Vein:

- Vein also contains carbonate
- Pyrite here has small grains
- 100um approximately to a few microns
- Altered into iron oxide
- Actinolite-tremolite and epidote in large proportions compared to the rest of the samples
- very few pyrite grains within this vein, mostly near the edge of the veins
- biotite grains are concentrated at the vein selvages
- Disseminated pyrite grains within the host rock

Mineral	Grainsize	Grain shape	Composition
Pyrite	500um to a few microns	anhedral	2%
Pyrrhotite	50 um	anhedral	trace
Pentlandite	10 um	anhedral	trace
Iron oxide	submicron	anhedral	Trace amount
Chalcopyrite	A few microns in size	Anhedral	Trace amount
Calcite	1mm to submicron	anhedral	8%
Quartz	800um to submicron	anhedral	36%
Epidote	100 um to submicron	anhedral	25%
Biotite	1.3 mm to submicron	Subhedral to anhedral	4%
Rutile	100 to submicron	anhedral	1%
Actinolite-tremolite	250um to a few microns	acicular	20%
Chlorite	250um to a few microns	anhedral	3%
Ilmenite	A few microns	anhedral	trace
Scheelite	250um to a few microns	anhedral	1%

- Pyrite inclusions
- Epidote
- Quartz

Slide NB036 - NW-SE Transect

Mineral	Grainsize	Grain shape	Composition
Pyrite	500um to a few microns	anhedral	2%
Quartz	2 mm to submicron	anhedral	20%
Albite	3 mm to submicron	anhedral	15%
Calcite	3 mm	anhedral	2%
Chalcopyrite	A few microns to submicorn	Anhedral or bladed	3%
Muscovite	200um to submicron	anhedral	4%
Epidote	150 to submicron	Anhedral to subhedral	10%
Biotite	700 um to a few microns	Some euhedral and subhedral, mostly anhedral	10%
Ilmenite	800um to submicron	Acicular or anhedral	15%
Chlorite	A few microns	Anhedral	trace
Galena	A few microns	Anhedral	trace
Apatite	A few microns	Anhedral	Trace
Titanite	Two vial		

- Two veins perpendicular to each other
- The main vein is parallel to foliation
- The smaller vein containing pyrite and rutile and is perpendicular and cross cuts foliation
- The chlorite grains at the vein selvage wrap around the vein
- Younger vein and foliation - chlorite/biotite and rutile grains at the vein selvage at some locations
- Majority of biotite has altered into chlorite

Vein:

Mineral	Grainsize	Grain shape	Composition
Pyrite	500 um to a few microns	anhedral	1%
Quartz	2 mm to submicron	anhedral	5%
Albite	3mm to submicron	anhedral	60%
Calcite	3mm	anhedral	$3 \% \%$
Chalcopyrite	A few microns to submicorn	Anhedral or bladed	1%
Muscovite	200um to submicron	anhedral	5%
Epidote	700 um to a few microns	Some euhedral and subhedral, mostly anhedral	3%
Ilmenite	800 um to submicron	Acicular or anhedral	4%
Chlorite	A few microns	Anhedral (i)	trace
Galena	A few microns	Anhedral (i)	trace
Apatite	A few microns	Anhedral (v)	Trace
Titanite			

- Pyrite inclusion
- Galena
- Quartz
- Apatite

Slide 488 - Pit

Mineral	Grainsize	Grain shape	Composition
Pyrite	4mm to a few microns	Subhedral to anhedral	10%
Calcite-Dolomite	2mm to a few microns	anhedral	10%
Iron oxide	submicron	Anhedral	5%
Hornblende	1mm to a few microns	Subhedral to anhedral	15%
Epidote	300um to a few microns	anhedral	3%
Biotite	1mm to submicron	Subhedral to anhedral	25%
Albite	600um to submicron	anhedral	3%
Quartz	600um to submicron	anhedral	30%
Chalcopyrite	50um to a few microns	anhedral	Trace amount
Bornite	A few microns to submicron	Anhedral	Trace amount
Unknown mineral of U, Ti, $\mathrm{Pb}, \mathrm{Sr} Cr$, and Fe	A few microns Galena anhedral	Trace amount	

- Vein here is parallel to foliation
- Usually find accumulation at vein selvage with large biotite grains, not found here - Here they contain higher concentrations of carbonates and a zone of fine grained quartz (with some submicron biotite grains, 100-50um carbonates and a few large quartz grains)
- This region, as well as some of the host rock distal to the vein, do not contain arfvedsonite or even large grains of biotite.
- Iron oxide is found within the vein as well as within the host rock just outside the proximal zone of host rock to the vein
- Epidote found within the host rock
- Edges of pyrite associated with chalcopyrite

Vein:

Mineral	Grainsize	Grain shape	Composition
Pyrite	4mm to a few microns	Subhedral to anhedral	20%
Calcite-Dolomite	2mm to a few microns	anhedral	15%
Iron oxide	submicron	Anhedral	10%
Biotite	A few microns	Subhedral to anhedral	5%
Albite	600um to submicron	anhedral	10%
Quartz	600um to submicron	anhedral	40%
Chalcopyrite	50 um to a few microns	anhedral	Trace amount
Bornite	A few microns to submicron	Anhedral	Trace amount
Unknown mineral of U, Ti, Pb, Sr, Cr and Fe	A few microns Galena anhedral	Trace amount	

- Bornite inclusions within iron oxide surrounding grain A
- Pyrite inclusions
- Epidote
- Chalcopyrite
- Galena
- Bornite
- biotite

Slide 490 - Pit

Thin section:

Mineral	Grainsize	Grain shape	Composition
Pyrite	3mm to a few microns	Euhedral to anhedral	5%
Iron oxide	Submicron	anhedral	2%
Biotite	500um to a few microns		39%
Chlorite	100um to a few microns	anhedral	3%
Quartz	1.5 mm to submicron	anhedral	40%
Albite	2mm to 0.250um	anhedral	10%
Calcite	100 um	Anhedral	trace
Monazite	A few microns	anhedral	trace
Fluorocarbonate	A few microns	anhedral	trace
Galena	A few microns	anhedral	trace
Muscovite	A few microns	subhedral	1%

- Vein is subparallel to foliation running diagonally across the slide and biotite grains wrap approximately around the vein
- There is a greater concentration of biotite for most of the host rock, the most distal regions are less concentrated in biotite
- The vein selvages are concentrated in larger biotite grains at some areas, in others they are more concentrated in fine grained quartz
- There are a few biotite grains as well as chlorite - alteration product of biotite within the vein. They aren't elongated along any direction in particular - multiple directions

Vein:

Mineral	Grainsize	Grain shape	Composition
Pyrite	3mm to a few microns	Euhedral to anhedral	10%
Iron oxide	Submicron	anhedral	5%
Biotite	500um to a few microns	Euhedral to anhedral	4%
Chlorite	100 um to a few microns	anhedral	10%
Quartz	$1.5 m m$ to submicron	anhedral	39%
Albite	2mm to 0.250um	anhedral	30%
Calcite	100um	Anhedral	1%
Muscovite	A few microns	subhedral	1%
Monazite	A few microns	anhedral	trace

Fluorocarbonate	A few microns	anhedral	trace
Galena	A few microns	anhedral	trace

- Pyrite :
- Biotite and quartz inclusion
- Cpy inclusion
- Galena inclusion
- Albite inclusion
- Fluorocarbonate within the vein
- Galena along the sides of pyrite

Appendix D: EPMA Analysis

D1. Average error percent for each element during EPMA analysis

Element	Average Error $\%$
Cu	653
Mg	726
As	443
Si	230
Pb	88
Ti	1127
Ni	540
W	1028
Co	42
S	622
Fe	0

D2. Elemental standards and crystals used for pyrite grains for EPMA. Fe and S are measured with Energy Dispersive Spectrometer.

Element	Crystals	Compound	Standard
Cu	TAP	Copper Metal	Astimex MetM25-44 standard block
Mg	TAP	Hornblende	Smithsonian USNM 143965
As	TAP	Gallium Arsenide	Astimex MetM25-44 standard block
Pb	PETj	Lead metal	Astimex MetM25-44 standard block
Ti	PETj	Rutile	Unknown origin
Ni	LIFH	Nickel metal	Astimex MetM25-44 standard block
W	LIFL	Tungsten metal	Astimex MetM25-44 standard block
Co	LIFL	Cobalt metal	Astimex MetM25-44 standard block
Fe, S	EDS	Pyrite	Astimex MinM25-53 standard block

D3. EPMA mass percent measurement for each element in pyrite grains

Comme nt	$\begin{array}{\|l} \hline \mathrm{Cu} \\ \mathrm{Cu} \\ \mathrm{Ma} \\ \mathrm{ss} \% \\ \mathrm{r} \end{array}$	$\begin{aligned} & \hline \mathrm{Mg} \\ & \mathrm{yg} \\ & \mathrm{Ma} \\ & \mathrm{ss} \% \\ & \mathrm{f} \end{aligned}$	As (Ma ss\%)	$\begin{array}{\|l} \hline \mathrm{Si} \\ \text { (Ma } \\ \text { ss } \% \\ \text {) } \end{array}$	$\begin{aligned} & \mathrm{Pb} \\ & (\mathrm{Ma} \\ & \mathrm{ss} \% \\ & \mathrm{n} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{Ti} \\ \text { (Ma } \\ \text { ss } \% \\ \text {) } \end{array}$	$\begin{aligned} & \hline \mathrm{Ni} \\ & \mathrm{Na} \\ & \mathrm{Ma} \\ & \mathrm{ss} \% \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & \mathrm{W} \\ & (\mathrm{Ma} \\ & \text { ss\% } \\ & \text {) } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{Co} \\ (\mathrm{Ma} \\ \mathrm{ss} \% \\) \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{Fe} \\ \mathrm{Ma} \\ \mathrm{Ms} \% \\ \mathrm{ss} \end{array}$	$\begin{aligned} & \hline \mathrm{S} \\ & \text { (Ma } \\ & \text { ss } \% \\ & \mathrm{f} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Tot } \\ \text { al } \\ \text { (Ma } \\ \text { ss\% } \\ \hline \end{array}$
168A- GrainC- 01	$\begin{array}{\|l\|} \hline 0.0 \\ 2 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 2 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 2 \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 4 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 2 \end{array}$	0.0	$\begin{array}{\|l\|} \hline 0.7 \\ 8 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 6 \end{array}$	$\begin{array}{\|l} \hline 0.1 \\ 5 \end{array}$	$45 .$ 1	$\begin{aligned} & \hline 52 . \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & 1 \end{aligned}$
	$\begin{array}{\|l\|} \hline 0.0 \\ 3 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 8 \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 6 \end{array}$	0.0	0.0	$\begin{array}{\|l\|} \hline 0.0 \\ 3 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 6 \end{array}$	$\begin{aligned} & 46 . \\ & 3 \end{aligned}$	$53 .$ 1	$\begin{aligned} & 99 . \\ & 5 \\ & \hline \end{aligned}$
168A- GrainC- 03	$\begin{array}{\|l\|} \hline 0.0 \\ 8 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 6 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 4 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 1 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 9 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 12 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 35 \end{array}$	$\begin{aligned} & 46 . \\ & 16 \end{aligned}$	$\begin{array}{\|l\|} \hline 52 . \\ 98 \end{array}$	$\begin{array}{\|l\|} \hline 99 . \\ 317 \end{array}$
168A- GrainC- 04	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 08 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 29 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 13 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 44 \\ \hline \end{array}$	0	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 72 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 56 \\ \hline \end{array}$	$\begin{aligned} & \hline 46 . \\ & 226 \end{aligned}$	$\begin{array}{l\|l\|} \hline 53 . \\ 047 \end{array}$	$\begin{aligned} & \hline 99 . \\ & 505 \end{aligned}$
168A- GrainC05	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 12 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 15 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 35 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 03 \\ \hline \end{array}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 78 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 59 \\ \hline \end{array}$	$\begin{aligned} & \hline 46 . \\ & 136 \end{aligned}$	$\begin{aligned} & \hline 53 . \\ & 274 \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & 802 \\ & \hline \end{aligned}$
168A-GrainC06	$\begin{aligned} & \hline 0.0 \\ & 18 \end{aligned}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 26 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \end{array}$	$\begin{aligned} & \hline 0.1 \\ & 23 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 66 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 46 . \\ 144 \\ \hline \end{array}$	$\begin{aligned} & \hline 53 . \\ & 085 \end{aligned}$	$\begin{array}{\|l\|} \hline 99 . \\ 581 \\ \hline \end{array}$
168A-GrainC07	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 09 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0.0 \\ 42 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 08 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 91 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 53 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 37 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 46 . \\ 406 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 53 . \\ 357 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ .04 \\ \hline 3 \\ \hline \end{array}$
168A-GrainC08	<L OD	0.0 06	0.0 19	$\begin{aligned} & \hline 0.0 \\ & 13 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 26 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 38 \end{array}$	$\begin{array}{\|l\|} \hline 0.7 \\ 97 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 66 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 53 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 45 . \\ 288 \end{array}$	$\begin{array}{\|l\|} \hline 53 . \\ 095 \\ \hline \end{array}$	$\begin{aligned} & 99 . \\ & 481 \end{aligned}$
168A-GrainC09	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 15 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 35 \end{array}$	$\begin{aligned} & \hline 0.1 \\ & 09 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 42 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 32 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 28 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 44 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 45 . \\ 557 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 52 . \\ 187 \\ \hline \end{array}$	$\begin{aligned} & 98 . \\ & 104 \end{aligned}$
168A- GrainC- 10	$\begin{array}{\|l\|} \hline 0.0 \\ 29 \end{array}$	0	$\begin{aligned} & 0.0 \\ & 3 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 05 \end{aligned}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 73 \\ \hline \end{array}$	$\begin{aligned} & 0.0 \\ & 47 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 43 \end{array}$	$\begin{array}{\|l\|} \hline 46 . \\ 126 \end{array}$	$\begin{array}{\|l\|} \hline 53 . \\ 266 \end{array}$	$\begin{aligned} & 99 . \\ & 802 \\ & \hline \end{aligned}$
3415A-GrainA01	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 04 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 07 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 08 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.2 \\ 05 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 08 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 16 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 3 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 84 \\ \hline \end{array}$	$\begin{aligned} & \hline 45 . \\ & 992 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 52 . \\ & 792 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & 114 \end{aligned}$
3415A-GrainA02	0.0 67	0.0 02	0.0 33	0.0 07	0.2 01	$\begin{array}{\|l\|} \hline 0.0 \\ 04 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 63 \\ \hline \end{array}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 66 \end{array}$	$\begin{aligned} & \hline 45 . \\ & 719 \end{aligned}$	$\begin{aligned} & 52 . \\ & 89 \end{aligned}$	$\begin{aligned} & 99 . \\ & 143 \end{aligned}$
3415A- GrainA- 03	0.0 5	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 22 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 11 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 42 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 22 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 15 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 32 \\ \hline \end{array}$	$\begin{aligned} & \hline 46 . \\ & 129 \end{aligned}$	$\begin{array}{\|l\|} \hline 53 . \\ 005 \end{array}$	$\begin{aligned} & \hline 99 . \\ & 435 \end{aligned}$

3415A- GrainA- 04	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 11 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 05 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 91 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 09 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 25 \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 42 \end{aligned}$	$\begin{aligned} & \hline 46 . \\ & 191 \end{aligned}$	$\begin{aligned} & 52 . \\ & 85 \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & 184 \end{aligned}$
3415A-GrainA05	$\begin{array}{\|l\|} \hline 0.0 \\ 03 \end{array}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 05 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 36 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 33 \end{aligned}$	$\begin{aligned} & 45 . \\ & 989 \end{aligned}$	$\begin{aligned} & 52 . \\ & 914 \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & 073 \end{aligned}$
3415A-GrainA06	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 07 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 09 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 11 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 17 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 16 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 85 \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 56 \end{aligned}$	$\begin{aligned} & \hline 46 . \\ & 173 \end{aligned}$	$\begin{aligned} & \hline 53 . \\ & 108 \end{aligned}$	$\begin{aligned} & 99 . \\ & 585 \end{aligned}$
3415A- GrainA07	$\begin{array}{\|l\|} \hline 0.0 \\ 44 \end{array}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 15 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 1 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 33 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 09 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline 46 . \\ & 091 \end{aligned}$	$\begin{aligned} & 53 . \\ & 093 \end{aligned}$	$\begin{aligned} & 99 . \\ & 705 \end{aligned}$
3415A- GrainA08	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 01 \end{aligned}$	0.0 2	$\begin{array}{\|l\|} \hline 0.0 \\ 08 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 47 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 18 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 84 \end{array}$	$\begin{aligned} & 0.0 \\ & 59 \end{aligned}$	$\begin{aligned} & 46 . \\ & 077 \end{aligned}$	$\begin{aligned} & 53 . \\ & 114 \end{aligned}$	$\begin{aligned} & 99 . \\ & 478 \end{aligned}$
3415A-GrainA09	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & 0.0 \\ & 06 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 27 \end{aligned}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 27 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & 0.0 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 71 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 65 \end{aligned}$	$\begin{aligned} & 46 . \\ & 181 \end{aligned}$	$\begin{aligned} & 53 . \\ & 131 \end{aligned}$	$\begin{aligned} & 99 . \\ & 7 \end{aligned}$
3415A-GrainA10	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 01 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 11 \end{aligned}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 44 \end{aligned}$	$\begin{aligned} & 46 . \\ & 84 \end{aligned}$	$\begin{aligned} & 53 . \\ & 602 \end{aligned}$	$\begin{aligned} & 100 \\ & .54 \\ & 1 \\ & \hline \end{aligned}$
153A- GrainC- 01	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 41 . \\ & 74 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 28 \end{array}$	$\begin{array}{\|l\|} \hline 0.2 \\ 39 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 3.6 \\ & 85 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 78 \end{aligned}$	$\begin{aligned} & 24 . \\ & 798 \end{aligned}$	$\begin{aligned} & 8.6 \\ & 02 \end{aligned}$	$\begin{aligned} & 22 . \\ & 815 \end{aligned}$	$\begin{aligned} & 100 \\ & .83 \\ & 1 \\ & \hline \end{aligned}$
153A-GrainC02	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 1.6 \\ & 42 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 09 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 85 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{aligned} & \hline 0.3 \\ & 59 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4 \end{aligned}$	$\begin{aligned} & 43 . \\ & 81 \end{aligned}$	$\begin{aligned} & 51 . \\ & 572 \end{aligned}$	$\begin{aligned} & 98 . \\ & 63 \end{aligned}$
153A-GrainC03	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 16 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 13 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 29 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 07 \\ \hline \end{array}$	0	$\begin{array}{\|l\|} \hline 0.0 \\ 63 \end{array}$	$\begin{aligned} & 6.0 \\ & 46 \end{aligned}$	$\begin{aligned} & 40 . \\ & 587 \end{aligned}$	$\begin{aligned} & 52 . \\ & 806 \end{aligned}$	$\begin{aligned} & 99 . \\ & 652 \end{aligned}$
153A-GrainC04	$\begin{aligned} & 0.0 \\ & 3 \end{aligned}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 14 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \end{array}$	$\begin{aligned} & 0.1 \\ & 52 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 08 \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & 69 \end{aligned}$	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 47 \end{aligned}$	$\begin{aligned} & 45 . \\ & 8 \end{aligned}$	$\begin{aligned} & 53 . \\ & 099 \end{aligned}$	$\begin{aligned} & 99 . \\ & 679 \end{aligned}$
153A-GrainC05	$\begin{array}{\|l\|} \hline 0.0 \\ 08 \end{array}$	$\begin{aligned} & 0.0 \\ & 08 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0 \\ & 08 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 17 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 36 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 03 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.4 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { L } \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 44 \end{aligned}$	$\begin{aligned} & 46 . \\ & 13 \end{aligned}$	$\begin{aligned} & 53 . \\ & 16 \end{aligned}$	$\begin{aligned} & 99 . \\ & 843 \end{aligned}$
153A-GrainC06	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 74 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 15 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 66 \\ \hline \end{array}$	0	$\begin{aligned} & 1.0 \\ & 7 \end{aligned}$	$\begin{aligned} & \hline \angle \mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 83 \end{aligned}$	$\begin{aligned} & 45 . \\ & 031 \end{aligned}$	$\begin{aligned} & 52 . \\ & 402 \end{aligned}$	$\begin{aligned} & 99 . \\ & 194 \end{aligned}$
153A-GrainC07	$\begin{aligned} & 0.0 \\ & 26 \end{aligned}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 09 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 15 \end{array}$	0.2 04	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{aligned} & 1.3 \\ & 61 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 82 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 57 \end{aligned}$	$\begin{aligned} & 44 . \\ & 794 \end{aligned}$	$\begin{aligned} & 53 . \\ & 051 \end{aligned}$	$\begin{aligned} & 99 . \\ & 78 \end{aligned}$
153A-GrainC08	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 18 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 12 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.1 \\ & 67 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 13 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.1 \\ & 46 \end{aligned}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 53 \end{aligned}$	$\begin{aligned} & \hline 46 . \\ & 168 \end{aligned}$	$\begin{aligned} & \hline 53 . \\ & 028 \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & 071 \end{aligned}$

153A- GrainC- 09	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 17 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 29 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 29 \end{array}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$<\mathrm{L}$ OD	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 43 \end{array}$	$\begin{aligned} & 46 . \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 53 . \\ & 119 \end{aligned}$	$\begin{aligned} & 99 . \\ & 77 \end{aligned}$
153A- GrainC- 10	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.1 \\ & 46 \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 54 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 04 \end{aligned}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 22 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 52 \\ \hline \end{array}$	$\begin{aligned} & \hline 46 . \\ & 001 \end{aligned}$	$\begin{aligned} & \hline 53 . \\ & 095 \end{aligned}$	$\begin{array}{\|l\|} \hline 99 . \\ 507 \end{array}$
886B- GrainA- 01	$\begin{aligned} & 0.0 \\ & 39 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 04 \\ \hline \end{array}$	0.0 18	$\begin{array}{\|l\|} \hline 0.0 \\ 11 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 83 \\ \hline \end{array}$	0	$\begin{array}{\|l\|} \hline 0.0 \\ 14 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 45 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.2 \\ 08 \\ \hline \end{array}$	$\begin{aligned} & \hline 45 . \\ & 368 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 . \\ & 068 \end{aligned}$	$\begin{array}{\|l} \hline 100 \\ .05 \\ 8 \end{array}$
886B-GrainA02	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	0	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 14 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 74 \\ \hline \end{array}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 2 \end{array}$	$\begin{aligned} & 0.1 \\ & 45 \end{aligned}$	$\begin{array}{\|l\|} \hline 2.1 \\ 96 \\ \hline \end{array}$	$\begin{aligned} & \hline 44 . \\ & 169 \end{aligned}$	$\begin{aligned} & 53 . \\ & 169 \end{aligned}$	$\begin{aligned} & 99 . \\ & 777 \end{aligned}$
886B-GrainA03	$\begin{aligned} & \hline 0.0 \\ & 09 \end{aligned}$	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 07 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 15 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 92 \\ \hline \end{array}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.2 \\ 72 \\ \hline \end{array}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 62 \\ \hline \end{array}$	$\begin{aligned} & \hline 60 . \\ & 278 \end{aligned}$	$\begin{aligned} & 38 . \\ & 593 \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & 303 \end{aligned}$
	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline \text { LL } \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 16 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 05 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 17 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 08 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 49 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 54 \\ \hline \end{array}$	$\begin{aligned} & \hline 62 . \\ & 906 \end{aligned}$	$\begin{aligned} & 36 . \\ & 246 \end{aligned}$	$\begin{aligned} & 99 . \\ & 366 \end{aligned}$
886B-GrainA05	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 43 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 15 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 25 \end{array}$	$\begin{aligned} & \hline \text { L } \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 32 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 62 \\ \hline \end{array}$	$\begin{aligned} & \hline 61 . \\ & 969 \end{aligned}$	$\begin{aligned} & \hline 36 . \\ & 942 \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & 272 \end{aligned}$
	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 11 \\ \hline \end{array}$	0.0 23	$\begin{array}{\|l\|} \hline 0.0 \\ 14 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 45 \end{array}$	$<\mathrm{L}$	$\begin{array}{\|l\|} \hline 0.3 \\ 01 \end{array}$	$\begin{aligned} & \hline 0.1 \\ & 96 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 64 \\ \hline \end{array}$	$\begin{aligned} & 60 . \\ & 381 \end{aligned}$	$\begin{aligned} & 38 . \\ & 512 \end{aligned}$	$\begin{aligned} & 99 . \\ & 596 \end{aligned}$
886B-GrainA07	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 22 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 1 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 41 \\ \hline \end{array}$	$\begin{aligned} & <L \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.3 \\ & 25 \end{aligned}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 59 \\ \hline \end{array}$	$\begin{aligned} & \hline 60 . \\ & 236 \end{aligned}$	$\begin{aligned} & 38 . \\ & 35 \end{aligned}$	$\begin{array}{\|l\|} \hline 98 . \\ 863 \\ \hline \end{array}$
886B- GrainA- 08	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 3 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 16 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 97 \end{array}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 14 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 66 \\ \hline \end{array}$	$\begin{aligned} & \hline 62 . \\ & 583 \\ & \hline \end{aligned}$	$\begin{aligned} & 36 . \\ & 281 \end{aligned}$	$\begin{array}{\|l\|} \hline 99 . \\ 026 \\ \hline \end{array}$
	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 41 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 21 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 95 \end{array}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 08 \\ \hline \end{array}$	$\begin{aligned} & 0.2 \\ & 67 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 82 \end{array}$	$\begin{array}{\|l\|} \hline 62 . \\ 649 \end{array}$	$\begin{aligned} & 36 . \\ & 189 \end{aligned}$	$\begin{aligned} & 99 . \\ & 27 \end{aligned}$
886B- GrainA- 10	$\begin{aligned} & \hline 0.0 \\ & 02 \end{aligned}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 3 \end{array}$	$\begin{aligned} & 0.0 \\ & 92 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 71 \end{array}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.8 \\ 75 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 76 \end{array}$	$\begin{array}{\|l\|} \hline 59 . \\ 074 \\ \hline \end{array}$	$\begin{aligned} & 38 . \\ & 315 \end{aligned}$	$\begin{aligned} & 98 . \\ & 417 \end{aligned}$
NB036-GrainB01	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.8 \\ 04 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 09 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 65 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.2 \\ 96 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 41 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.8 \\ 7 \end{array}$	$\begin{array}{\|l\|} \hline 44 . \\ 406 \\ \hline \end{array}$	$\begin{aligned} & 52 . \\ & 688 \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ .20 \\ 8 \\ \hline \end{array}$
NB036-GrainB02	$\begin{array}{\|l\|} \hline 0.0 \\ 71 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & 0.7 \\ & 97 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 08 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 39 \end{array}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.2 \\ 66 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 2.0 \\ 12 \end{array}$	$\begin{array}{\|l\|} \hline 44 . \\ 032 \end{array}$	$\begin{aligned} & 52 . \\ & 725 \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & 884 \end{aligned}$
NB036-GrainB03	$\begin{array}{\|l\|} \hline 0.0 \\ 9 \end{array}$	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.4 \\ 94 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 32 \\ \hline \end{array}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.5 \\ 49 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 28 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.2 \\ 83 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 44 . \\ 793 \\ \hline \end{array}$	$\begin{aligned} & 52 . \\ & 972 \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ .32 \\ 5 \\ \hline \end{array}$

NB036-GrainB04	$\begin{array}{\|l\|} \hline 0.0 \\ 94 \end{array}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.4 \\ 09 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 03 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 15 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & \hline 0.6 \\ & 38 \end{aligned}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 32 \end{aligned}$	$\begin{aligned} & \hline 44 . \\ & 819 \end{aligned}$	$\begin{array}{\|l\|} \hline 53 . \\ 054 \end{array}$	$\begin{aligned} & 100 \\ & .05 \\ & 3 \end{aligned}$
NB036-GrainB05	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 27 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 11 \end{array}$	$\begin{array}{\|l\|} \hline 0.2 \\ 08 \\ \hline \end{array}$	0	$\begin{array}{\|l\|} \hline 2.7 \\ 02 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 84 \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 91 \end{aligned}$	$\begin{aligned} & \hline 43 . \\ & 748 \end{aligned}$	$\begin{array}{\|l\|} \hline 53 . \\ 336 \end{array}$	$\begin{aligned} & \hline 100 \\ & .15 \\ & 7 \end{aligned}$
$\begin{aligned} & \text { NB036- } \\ & \text { GrainB- } \\ & 06 \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 39 \end{aligned}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 79 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 13 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 57 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 09 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.1 \\ 17 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 44 . \\ & 647 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 53 . \\ 319 \\ \hline \end{array}$	$\begin{aligned} & 99 . \\ & 801 \end{aligned}$
NB036-GrainA01	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 08 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 69 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 15 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 07 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 27 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 59 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 53 \\ \hline \end{array}$	$\begin{aligned} & \hline 68 . \\ & 105 \\ & \hline \end{aligned}$	0	$\begin{aligned} & \hline 68 . \\ & 29 \end{aligned}$
NB036-GrainA02	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 47 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 15 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 17 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 07 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 68 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 76 \end{array}$	$\begin{aligned} & \hline 68 . \\ & 065 \end{aligned}$	0	$\begin{aligned} & \hline 68 . \\ & 265 \end{aligned}$
NB036-GrainA03	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 02 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 28 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 09 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 79 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 1 \end{array}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 81 \end{array}$	$\begin{aligned} & 46 . \\ & 345 \end{aligned}$	$\begin{array}{\|l\|} \hline 53 . \\ 163 \\ \hline \end{array}$	$\begin{aligned} & 99 . \\ & 753 \end{aligned}$
NB036-GrainA04	$\begin{array}{\|l\|} \hline 0.0 \\ 29 \\ \hline \end{array}$	0.0 01	0.0	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 84 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 28 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 58 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.4 \\ & 61 \end{aligned}$	$\begin{aligned} & \hline 45 . \\ & 845 \end{aligned}$	$\begin{aligned} & \hline 53 . \\ & 125 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & 732 \end{aligned}$
$\begin{aligned} & \text { NB036- } \\ & \text { GrainA- } \\ & 05 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 02 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 09 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 47 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \angle \mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & \text { <L } \\ & \hline 0 n \end{aligned}$	$\begin{aligned} & 0.1 \\ & 21 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 55 \end{array}$	$\begin{aligned} & \hline 45 . \\ & 905 \end{aligned}$	$\begin{array}{\|l\|} \hline 53 . \\ 245 \\ \hline \end{array}$	$\begin{aligned} & 99 . \\ & 485 \end{aligned}$
NB036-GrainA06	$\begin{array}{\|l\|} \hline 0.0 \\ 21 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 68 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 22 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.3 \\ 9 \end{array}$	$\begin{aligned} & 46 . \\ & 16 \end{aligned}$	$\begin{array}{\|l\|} \hline 53 . \\ 356 \\ \hline \end{array}$	$\begin{aligned} & \hline 100 \\ & .1 \end{aligned}$
NB036-GrainA07	$\begin{array}{\|l\|} \hline 0.0 \\ 69 \end{array}$	$\begin{aligned} & 0.0 \\ & 03 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 08 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 07 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 66 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 03 \end{array}$	$\begin{array}{l\|} \hline 46 . \\ 395 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 53 . \\ 288 \\ \hline \end{array}$	$\begin{aligned} & \hline 100 \\ & .01 \\ & 7 \end{aligned}$
NB036-GrainA08	$\begin{array}{\|l\|} \hline 0.0 \\ 82 \\ \hline \end{array}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 04 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 0.0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 49 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 05 \end{array}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 74 \end{array}$	$\begin{aligned} & \hline 46 . \\ & 731 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 53 . \\ 497 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & .53 \\ & 2 \\ & \hline \end{aligned}$
490- GrainA- 01	$\begin{aligned} & 0.0 \\ & 72 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 03 \\ \hline \end{array}$	0.0 21	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.2 \\ 2 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 11 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 3 \end{array}$	$\begin{aligned} & 0.0 \\ & 38 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 89 \end{array}$	$\begin{aligned} & \hline 46 . \\ & 213 \end{aligned}$	$\begin{array}{\|l\|} \hline 53 . \\ 023 \\ \hline \end{array}$	$\begin{aligned} & \hline 99 . \\ & 721 \\ & \hline \end{aligned}$
490- GrainA02	0.0 37	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	0.0 17	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \\ \hline \end{array}$	0.1 7	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 09 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 41 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 71 \end{array}$	$\begin{aligned} & 46 . \\ & 44 \end{aligned}$	$\begin{array}{\|l\|} \hline 53 . \\ 494 \\ \hline \end{array}$	$\begin{aligned} & \hline 100 \\ & .37 \\ & 7 \end{aligned}$
490- GrainA- 03	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \\ \hline \end{array}$	$\begin{aligned} & 0.0 \\ & 22 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 07 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 81 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 21 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 62 \end{aligned}$	$\begin{array}{\|l\|} \hline 46 . \\ 479 \end{array}$	$\begin{array}{\|l\|} \hline 53 . \\ 248 \\ \hline \end{array}$	$\begin{aligned} & \hline 99 . \\ & 814 \end{aligned}$
490- GrainA04	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 05 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 36 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 55 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 16 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 4 \end{array}$	$\begin{aligned} & \hline 46 . \\ & 424 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 53 . \\ & 409 \end{aligned}$	$\begin{aligned} & \hline 100 \\ & .07 \\ & 5 \\ & \hline \end{aligned}$

490- GrainA05	$\begin{array}{\|l\|} \hline 0.0 \\ 1 \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 05 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 04 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{l\|} \hline 0.1 \\ 77 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 37 \end{array}$	$\begin{aligned} & \hline 46 . \\ & 206 \end{aligned}$	$\begin{aligned} & \hline 53 . \\ & 275 \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & 551 \end{aligned}$
$\begin{array}{\|l\|} \hline 490- \\ \text { GrainA- } \\ 06 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 03 \\ \hline \end{array}$	0	$\begin{array}{\|l\|} \hline 0.0 \\ 29 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 08 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 4 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 07 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 49 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 49 \\ \hline \end{array}$	$\begin{aligned} & \hline 46 . \\ & 439 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 . \\ & 3 \end{aligned}$	$\begin{aligned} & 100 \\ & .02 \\ & 3 \end{aligned}$
490- GrainA- 07	$\begin{array}{\|l\|} \hline 0.0 \\ 18 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	0.0 36	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	0.1	$\begin{array}{\|l\|} \hline 0.0 \\ 05 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.4 \\ & 15 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 44 \\ \hline \end{array}$	$\begin{aligned} & \hline 46 . \\ & 141 \end{aligned}$	$\begin{aligned} & 53 . \\ & 342 \end{aligned}$	$\begin{aligned} & 100 \\ & .09 \\ & 9 \end{aligned}$
$\begin{array}{\|l\|} \hline 490- \\ \text { GrainA- } \\ 08 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 04 \\ \hline \end{array}$	0.0 13	$\begin{array}{\|l\|} \hline 0.0 \\ 03 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 56 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 25 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 2 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 71 \\ \hline \end{array}$	$\begin{aligned} & \hline 42 . \\ & 944 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 66 \end{aligned}$	$\begin{aligned} & 43 . \\ & 124 \end{aligned}$
157- GrainA01	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 31 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 86 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 33 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 84 \\ \hline \end{array}$	$\begin{aligned} & \hline 46 . \\ & 006 \end{aligned}$	$\begin{aligned} & 53 . \\ & 17 \end{aligned}$	$\begin{aligned} & 99 . \\ & 495 \end{aligned}$
157- GrainA- 02	$\begin{array}{\|l\|} \hline 0.0 \\ 2 \end{array}$	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 42 \end{aligned}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 17 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline<\mathrm{L} \\ \hline 0 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 25 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.2 \\ 12 \\ \hline \end{array}$	$\begin{aligned} & 45 . \\ & 997 \end{aligned}$	$\begin{aligned} & 53 . \\ & 057 \end{aligned}$	$99 .$
157- GrainA- 03	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 09 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 39 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.2 \\ 84 \\ \hline \end{array}$	$\begin{aligned} & \hline 45 . \\ & 952 \end{aligned}$	$\begin{aligned} & \hline 53 . \\ & 086 \end{aligned}$	$\begin{aligned} & 99 . \\ & 358 \end{aligned}$
157- GrainA- 04	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 03 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 03 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 64 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \\ \hline \end{array}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 58 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 38 \end{array}$	$\begin{aligned} & 46 . \\ & 094 \end{aligned}$	$\begin{aligned} & 53 . \\ & 237 \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & 583 \end{aligned}$
157- GrainA- 05	$\begin{array}{\|l\|} \hline 0.0 \\ 09 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	0.0 2	$\begin{array}{\|l\|} \hline 0.0 \\ 05 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 63 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 2 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 98 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 38 \\ \hline \end{array}$	$\begin{aligned} & \hline 46 . \\ & 354 \end{aligned}$	$\begin{aligned} & 53 . \\ & 167 \end{aligned}$	$\begin{aligned} & 99 . \\ & 863 \end{aligned}$
157-GrainA06	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 07 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 07 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 3 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 17 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 68 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 4 \end{array}$	$\begin{array}{\|l\|} \hline 46 . \\ 473 \end{array}$	$\begin{aligned} & 53 . \\ & 261 \end{aligned}$	$\begin{aligned} & 99 . \\ & 959 \end{aligned}$
157- GrainA07	$\begin{array}{\|l\|} \hline 0.0 \\ 29 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 21 \end{array}$	0	$\begin{array}{\|l\|} \hline 0.1 \\ 36 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 04 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 66 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 46 . \\ 257 \end{array}$	$\begin{aligned} & 53 . \\ & 114 \end{aligned}$	$\begin{aligned} & 99 . \\ & 487 \end{aligned}$
157- GrainA- 08	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 56 \\ \hline \end{array}$	0.0	$\begin{array}{\|l\|} \hline 0.1 \\ 7 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 12 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 19 \end{array}$	$\begin{aligned} & 0.1 \\ & 94 \end{aligned}$	$\begin{array}{l\|} \hline 0.5 \\ 66 \end{array}$	$\begin{aligned} & \hline 45 . \\ & 956 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 . \\ & 11 \end{aligned}$	$\begin{aligned} & 100 \\ & .01 \\ & 2 \\ & \hline \end{aligned}$
154- GrainA- 01	0	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 11 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 09 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 58 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 22 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 25 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 45 \end{array}$	$\begin{array}{\|l\|} \hline 45 . \\ 862 \\ \hline \end{array}$	$\begin{aligned} & 53 . \\ & 123 \end{aligned}$	$\begin{aligned} & 99 . \\ & 359 \end{aligned}$
154- GrainA- 02	$\begin{array}{\|l\|} \hline 0.0 \\ 18 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 07 \\ \hline \end{array}$	0.0 3	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 88 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 09 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 46 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 07 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 66 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 46 . \\ 078 \\ \hline \end{array}$	$\begin{aligned} & \hline 52 . \\ & 973 \end{aligned}$	$\begin{aligned} & 99 . \\ & 521 \end{aligned}$
154- GrainA- 03	$\begin{array}{\|l\|} \hline 0.0 \\ 31 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 2 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 47 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 08 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 1 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 3 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 39 \end{array}$	$\begin{array}{l\|} \hline 46 . \\ 307 \\ \hline \end{array}$	$\begin{aligned} & 53 . \\ & 035 \end{aligned}$	$\begin{aligned} & 99 . \\ & 63 \end{aligned}$

154- GrainA- 04	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 15 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 56 \\ \hline \end{array}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 58 \\ \hline \end{array}$	$\begin{aligned} & 46 . \\ & 09 \end{aligned}$	$\begin{aligned} & 52 . \\ & 663 \end{aligned}$	$\begin{aligned} & 97 . \\ & 542 \end{aligned}$
154- GrainA- 05	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 12 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 25 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 27 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 21 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 49 \\ \hline \end{array}$	$\begin{aligned} & \hline 46 . \\ & 151 \end{aligned}$	$\begin{aligned} & 53 . \\ & 114 \end{aligned}$	$\begin{array}{\|l\|} \hline 99 . \\ 573 \end{array}$
154-GrainA06	$\begin{array}{\|l\|} \hline 0.0 \\ 87 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 23 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 11 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 25 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 05 \end{array}$	$\begin{aligned} & 0.1 \\ & 07 \end{aligned}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 43 \\ \hline \end{array}$	$\begin{aligned} & \hline 45 . \\ & 923 \end{aligned}$	$\begin{aligned} & \hline 52 . \\ & 943 \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & \hline 192 \end{aligned}$
154- GrainA- 07	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 25 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 09 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 9 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 21 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 95 \end{array}$	$\begin{aligned} & \hline 45 . \\ & 976 \end{aligned}$	$\begin{aligned} & \hline 52 . \\ & 989 \end{aligned}$	$\begin{array}{\|l\|} \hline 98 . \\ 61 \end{array}$
154- GrainA08	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 18 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 64 \\ \hline \end{array}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \hline 0 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 22 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 85 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 44 \\ \hline \end{array}$	$\begin{aligned} & \hline 46 . \\ & 109 \end{aligned}$	$\begin{aligned} & 53 . \\ & 147 \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & 46 \end{aligned}$
154- GrainA- 09	$\begin{array}{\|l\|} \hline 0.0 \\ 48 \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 06 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 09 \end{array}$	0	$\begin{array}{\|l\|} \hline 0.1 \\ 43 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \angle \mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 38 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.7 \\ 65 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 43 \\ \hline \end{array}$	$\begin{aligned} & 45 . \\ & 885 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 . \\ & 321 \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ .24 \\ \hline \end{array}$
154- GrainA- 10	$\begin{array}{\|l\|} \hline 0.0 \\ 81 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 28 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 75 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 05 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 2 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 87 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 52 \\ \hline \end{array}$	$\begin{aligned} & \hline 46 . \\ & 034 \end{aligned}$	$\begin{aligned} & 53 . \\ & 084 \end{aligned}$	$\begin{array}{\|l\|} \hline 99 . \\ 556 \end{array}$
895B- GrainA- 01	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \angle \mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & 0.0 \\ & 23 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 07 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 55 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 11 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 13 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \angle \mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 84 \\ \hline \end{array}$	$\begin{aligned} & \hline 46 . \\ & 498 \end{aligned}$	$\begin{aligned} & 53 . \\ & 058 \end{aligned}$	$\begin{array}{\|l\|} \hline 98 . \\ 639 \\ \hline \end{array}$
895B- GrainA- 02	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	0	$\begin{array}{\|l\|} \hline 0.0 \\ 14 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 68 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 03 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 08 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 21 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 8 \end{array}$	$\begin{aligned} & \hline 46 . \\ & 549 \end{aligned}$	$\begin{aligned} & 53 . \\ & 309 \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ .13 \\ 3 \\ \hline 100 \\ \hline \end{array}$
895B- GrainA- 03	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	0	$\begin{array}{\|l\|} \hline 0.0 \\ 22 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 07 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 53 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 05 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 64 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 49 \\ \hline \end{array}$	$\begin{array}{l\|} \hline 46 . \\ 587 \\ \hline \end{array}$	$\begin{aligned} & 53 . \\ & 3 \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ .18 \\ 7 \\ \hline \end{array}$
$\begin{aligned} & \text { 895B- } \\ & \text { GrainA- } \\ & 04 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 04 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 03 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 14 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 86 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<L \\ O D \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 04 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & 0.0 \\ & 77 \end{aligned}$	$\begin{aligned} & 46 . \\ & 5 \end{aligned}$	$\begin{aligned} & 53 . \\ & 401 \end{aligned}$	$\begin{aligned} & 100 \\ & .11 \\ & 7 \end{aligned}$
895B- GrainB- 01	$\begin{array}{\|l\|} \hline 0.0 \\ 82 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	0	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 19 \end{array}$	$\begin{aligned} & \hline \text { L } \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 61 \\ \hline \end{array}$	$\begin{aligned} & 46 . \\ & 301 \end{aligned}$	$\begin{aligned} & 53 . \\ & 154 \end{aligned}$	$\begin{array}{\|l\|} \hline 99 . \\ 643 \\ \hline \end{array}$
$\begin{aligned} & \hline \text { 895B- } \\ & \text { GrainB- } \\ & 02 \end{aligned}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 05 \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 19 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.8 \\ 55 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 16 \end{array}$	0	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 17 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 53 \\ \hline \end{array}$	$\begin{aligned} & \hline 48 . \\ & 727 \end{aligned}$	$\begin{aligned} & 27 . \\ & 562 \end{aligned}$	$\begin{aligned} & 77 . \\ & 279 \end{aligned}$
	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 16 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \end{array}$	$\begin{aligned} & 0.1 \\ & 67 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 11 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 75 \end{array}$	$\begin{aligned} & 46 . \\ & 247 \end{aligned}$	$\begin{aligned} & 53 . \\ & 265 \end{aligned}$	$\begin{array}{\|l\|} \hline 99 . \\ 699 \end{array}$
$\begin{aligned} & \hline \text { 895B- } \\ & \text { GrainB- } \\ & 04 \end{aligned}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 06 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 18 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 95 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	0	$\begin{array}{\|l\|} \hline 0.0 \\ 58 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 77 \\ \hline \end{array}$	$\begin{aligned} & \hline 46 . \\ & 224 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 . \\ & 25 \end{aligned}$	$\begin{array}{\|l\|} \hline 99 . \\ 815 \end{array}$

895B- GrainB- 05	$\begin{array}{\|l\|} \hline 0.0 \\ 65 \end{array}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 46 \end{array}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 94 \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 34 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 7 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 74 \end{array}$	$\begin{aligned} & 46 . \\ & 31 \end{aligned}$	$\begin{aligned} & 53 . \\ & 268 \end{aligned}$	$\begin{aligned} & \hline 100 \\ & .03 \\ & 7 \end{aligned}$
$\begin{aligned} & \hline \text { 895B- } \\ & \text { GrainB- } \\ & 06 \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 28 \end{aligned}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 28 \end{aligned}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 43 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 12 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 2 \end{array}$	$\begin{aligned} & \hline 0.1 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 59 \end{aligned}$	$\begin{aligned} & \hline 46 . \\ & 391 \end{aligned}$	$\begin{aligned} & 53 . \\ & 316 \end{aligned}$	$\begin{aligned} & \hline 100 \\ & .10 \\ & 9 \end{aligned}$
$\begin{aligned} & \hline \text { 895B- } \\ & \text { GrainB- } \\ & 07 \end{aligned}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 22 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 03 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 2 \end{aligned}$	0	$\begin{array}{\|l\|} \hline 0.0 \\ 35 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 73 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 05 \end{array}$	$\begin{aligned} & 60 \\ & \hline 44 \\ & \hline \end{aligned}$	$\begin{aligned} & 38 . \\ & 344 \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & 112 \end{aligned}$
$\begin{aligned} & \text { 164B- } \\ & \text { GrainC- } \\ & 01 \end{aligned}$	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 01 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 35 \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 06 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 77 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 05 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 15 \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 95 \end{array}$	$\begin{array}{\|l\|} \hline 46 . \\ 08 \\ \hline \end{array}$	$\begin{aligned} & 53 . \\ & 068 \end{aligned}$	$\begin{aligned} & 99 . \\ & 685 \end{aligned}$
164B- GrainC02	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 39 . \\ & 015 \end{aligned}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 08 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 12 \end{array}$	$\begin{array}{\|l\|} \hline 0.2 \\ 92 \\ \hline \end{array}$	$\begin{aligned} & 0.0 \\ & 85 \end{aligned}$	$\begin{aligned} & 38 . \\ & 437 \end{aligned}$
$\begin{aligned} & \text { 164B- } \\ & \text { GrainC- } \\ & 03 \end{aligned}$	$\begin{aligned} & \text { <L } \\ & \mathrm{OD} \end{aligned}$	0	$\begin{aligned} & \hline 0.0 \\ & 06 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 13 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 74 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 07 \\ \hline \end{array}$	$\begin{aligned} & 0.0 \\ & 27 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 39 \end{aligned}$	$\begin{aligned} & \hline 43 . \\ & 961 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 . \\ & 235 \end{aligned}$	$\begin{aligned} & 99 . \\ & 931 \end{aligned}$
$\begin{aligned} & \text { 164B- } \\ & \text { GrainC- } \\ & 04 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 37 \end{array}$	$\begin{aligned} & \hline \angle \mathrm{L} \\ & \mathrm{OD} \end{aligned}$	0	$\begin{aligned} & 0.0 \\ & 11 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 46 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 2.7 \\ 4 \end{array}$	$\begin{array}{\|l\|} \hline 43 . \\ 484 \\ \hline \end{array}$	$\begin{aligned} & 53 . \\ & 001 \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & 043 \end{aligned}$
164B-GrainC05	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 22 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 12 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \angle \mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & \text { <L } \\ & \hline 0 n \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{OD} \end{aligned}$	2.8	$\begin{aligned} & 43 . \\ & 438 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 . \\ & 052 \end{aligned}$	$\begin{aligned} & 99 . \\ & 336 \end{aligned}$
$\begin{aligned} & \hline \text { 164B- } \\ & \text { GrainC- } \\ & 06 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 1 \end{array}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	0	$\begin{aligned} & \hline 0.0 \\ & 15 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 78 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{aligned} & \hline 0.1 \\ & 22 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 4 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 63 \end{array}$	$\begin{aligned} & \hline 60 . \\ & 409 \end{aligned}$	$\begin{aligned} & 38 . \\ & 465 \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & 379 \end{aligned}$
164B-GrainC07	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 06 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 3 \end{array}$	$\begin{aligned} & 0.0 \\ & 06 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 28 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 36 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 68 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 65 \end{array}$	$\begin{aligned} & \hline 60 . \\ & 498 \\ & \hline \end{aligned}$	$\begin{aligned} & 38 . \\ & 443 \end{aligned}$	$\begin{aligned} & 99 . \\ & 284 \end{aligned}$
164B- GrainC08	$\begin{array}{\|l\|} \hline 0.0 \\ 09 \\ \hline \end{array}$	$\begin{aligned} & 0.0 \\ & 03 \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 09 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 58 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & 0.1 \\ & 41 \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 64 \end{aligned}$	$\begin{aligned} & 60 . \\ & 021 \\ & \hline \end{aligned}$	$\begin{aligned} & 38 . \\ & 509 \end{aligned}$	$\begin{aligned} & 98 . \\ & 845 \end{aligned}$
164B-GrainC09	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 05 \end{aligned}$	0.0	$\begin{aligned} & 0.1 \\ & 16 \end{aligned}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & 0.1 \\ & 47 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 12 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 65 \end{array}$	$\begin{aligned} & \hline 60 . \\ & 505 \end{aligned}$	$\begin{aligned} & 38 . \\ & 563 \end{aligned}$	$\begin{aligned} & 99 . \\ & 461 \end{aligned}$
164B- GrainC- 10	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 31 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 15 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 95 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 58 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 7 \end{array}$	$\begin{aligned} & 60 . \\ & 41 \end{aligned}$	$\begin{aligned} & 38 . \\ & 405 \end{aligned}$	$\begin{aligned} & 99 . \\ & 019 \end{aligned}$
162- GrainA01	$\begin{array}{\|l\|} \hline 0.0 \\ 11 \end{array}$	0	$\begin{array}{\|l\|} \hline 0.0 \\ 18 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 28 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 9 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 14 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 05 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 47 \end{array}$	$\begin{aligned} & \hline 45 . \\ & 778 \end{aligned}$	$\begin{aligned} & 53 . \\ & 244 \end{aligned}$	$\begin{aligned} & 99 . \\ & 385 \end{aligned}$
162-GrainA02	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline<L \\ \mathrm{OD} \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 37 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 15 \end{array}$	$\begin{aligned} & \hline 0.1 \\ & 41 \end{aligned}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 96 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 44 \end{array}$	$\begin{aligned} & \hline 45 . \\ & 788 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 . \\ & 04 \end{aligned}$	$\begin{aligned} & \hline 99 . \\ & 093 \end{aligned}$

162- GrainA03	$\begin{aligned} & 0.0 \\ & 43 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 07 \end{array}$	$\begin{aligned} & \hline \text { L } \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 14 \end{aligned}$	$\begin{array}{\|l} \hline 0.1 \\ 8 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \end{array}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 56 \end{aligned}$	$\begin{aligned} & 45 . \\ & 833 \end{aligned}$	$\begin{aligned} & 52 . \\ & 971 \end{aligned}$	$\begin{array}{\|l\|} \hline 98 . \\ 969 \end{array}$
162- GrainA04	$\begin{aligned} & 0.0 \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 05 \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 04 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 6 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 03 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.0 \\ & 11 \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 7 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 42 \end{aligned}$	$\begin{aligned} & 45 . \\ & 776 \end{aligned}$	$\begin{aligned} & 52 . \\ & 925 \end{aligned}$	$\begin{array}{\|l\|} \hline 99 . \\ 058 \\ \hline \end{array}$
162- GrainA05	$\begin{aligned} & 0.0 \\ & 25 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 01 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \end{array}$	$\begin{array}{l\|} \hline 0.0 \\ 03 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.2 \\ & 23 \end{aligned}$	$\begin{array}{\|l\|} \hline \angle \mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & 0.1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 54 \end{aligned}$	$\begin{aligned} & 45 . \\ & 709 \end{aligned}$	$\begin{aligned} & 52 . \\ & 859 \end{aligned}$	$\begin{aligned} & 98 . \\ & 976 \end{aligned}$
162- GrainA06	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 06 \\ \hline \end{array}$	$\begin{aligned} & 0.0 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 07 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 6 \end{aligned}$	$\begin{array}{\|l\|} \hline<\mathrm{L} \\ \mathrm{OD} \end{array}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline<\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 26 \end{aligned}$	$\begin{aligned} & 45 . \\ & 874 \end{aligned}$	$\begin{aligned} & 52 . \\ & 834 \end{aligned}$	$\begin{aligned} & 98 . \\ & 76 \end{aligned}$
162- GrainA07	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	0.0 02	$\begin{array}{\|l\|} \hline 0.0 \\ 09 \end{array}$	$\begin{aligned} & 0.0 \\ & 55 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 76 \end{aligned}$	$\begin{aligned} & \hline \text { LL } \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 22 \end{aligned}$	$\begin{aligned} & <\mathrm{L} \\ & \mathrm{OD} \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 69 \end{aligned}$	$\begin{aligned} & 45 . \\ & 458 \end{aligned}$	$\begin{aligned} & 52 . \\ & 746 \end{aligned}$	$\begin{aligned} & 98 . \\ & 566 \end{aligned}$

D. 4 EPMA error percent measurement for each element in pyrite grains

Com ment	$\begin{array}{\|l} \hline \mathrm{Cu} \\ \text { (Err } \\ \text { or\% } \\ \text { o } \end{array}$	$\begin{array}{\|l} \hline \mathrm{Mg} \\ \text { (Err } \\ \text { or\% } \\ \text { or } \end{array}$	As (Err or\%)	Si (Err or\%)	Pb (Err or\%)	$\begin{aligned} & \mathrm{Ti} \\ & \text { (Err } \\ & \text { or\% } \\ & \text {) } \end{aligned}$	$\begin{aligned} & \mathrm{Ni} \\ & \text { (Err } \\ & \text { or\% } \\ & \text {) } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { W } \\ \text { (Err } \\ \text { or\% } \\ \text { o } \end{array}$	$\begin{array}{\|l} \hline \text { Co } \\ \text { (Err } \\ \text { or\% } \\ \text {) } \end{array}$	$\begin{aligned} & \text { W } \\ & \text { (Err } \\ & \text { or\% } \\ & \text {) } \end{aligned}$	Fe (Err or\%)	Tota 1 (Err or\%)
$\begin{aligned} & 168 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nC- } \\ & 01 \\ & \hline \end{aligned}$	300	300	$\begin{aligned} & 222 . \\ & 98 \end{aligned}$	$\begin{array}{\|l} \hline 31.5 \\ 8 \end{array}$	$\begin{aligned} & 73.3 \\ & 0 \end{aligned}$	$\begin{aligned} & 185 . \\ & 1 \end{aligned}$	5.65	$\begin{array}{\|l\|} \hline 120 \\ 2.71 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 18.9 \\ 9 \end{array}$	$\begin{aligned} & 441 . \\ & 6 \end{aligned}$	0	$\begin{aligned} & 278 \\ & 2 \end{aligned}$
$\begin{aligned} & 168 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nC- } \\ & 02 \\ & \hline \end{aligned}$	300	$\begin{aligned} & 196 . \\ & 61 \end{aligned}$	$\begin{aligned} & 159 . \\ & 07 \end{aligned}$	$\begin{array}{\|l\|} \hline 81.0 \\ 4 \end{array}$	$\begin{aligned} & 141 . \\ & 44 \end{aligned}$	300	$\begin{aligned} & 250 \\ & 2.61 \end{aligned}$	$\begin{aligned} & 351 . \\ & 45 \end{aligned}$	42.5	$\begin{aligned} & \hline 778 \\ & 1.14 \end{aligned}$	0	$\begin{aligned} & 118 \\ & 55.8 \\ & 6 \end{aligned}$
$\begin{aligned} & 168 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nC- } \\ & 03 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 135 . \\ 73 \end{array}$	$\begin{array}{\|l} \hline 244 . \\ 8 \end{array}$	$\begin{aligned} & 76.5 \\ & 3 \end{aligned}$	$\begin{aligned} & 101 . \\ & 42 \end{aligned}$	$\begin{aligned} & 103 . \\ & 45 \end{aligned}$	300	$\begin{aligned} & 260 . \\ & 97 \end{aligned}$	300	$\begin{array}{\|l} \hline 77.1 \\ 8 \end{array}$	300	0	$\begin{aligned} & \hline 190 \\ & 0.08 \end{aligned}$
$\begin{aligned} & 168 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nC- } \\ & 04 \\ & \hline \end{aligned}$	300	$\begin{aligned} & 182 . \\ & 48 \end{aligned}$	$\begin{aligned} & 128 . \\ & 35 \end{aligned}$	83.9	$\begin{aligned} & \hline 67.6 \\ & 2 \end{aligned}$	300	$\begin{aligned} & 508 . \\ & 85 \end{aligned}$	$\begin{array}{\|l\|} \hline 294 . \\ 89 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 48.0 \\ 5 \end{array}$	$\begin{aligned} & 294 . \\ & 86 \end{aligned}$	0	$\begin{aligned} & 220 \\ & 9 \end{aligned}$
$\begin{array}{\|l\|} \hline 168 \\ \text { A- } \\ \text { Grai } \\ \hline \end{array}$	$\begin{aligned} & 775 \\ & 3.3 \end{aligned}$	300	$\begin{aligned} & 315 . \\ & 68 \end{aligned}$	74.7	70.8	$\begin{aligned} & 826 . \\ & 16 \end{aligned}$	300	$\begin{array}{\|l\|} \hline 107 \\ 3.83 \\ \hline \end{array}$	$\begin{aligned} & 46.1 \\ & 7 \end{aligned}$	$\begin{aligned} & 228 . \\ & 15 \end{aligned}$	0	$\begin{aligned} & 109 \\ & 88.7 \\ & 9 \\ & \hline \end{aligned}$

$\begin{array}{\|l} \hline \mathrm{nC}- \\ 05 \end{array}$												
$\begin{array}{\|l} \hline 168 \\ \text { A- } \\ \text { Grai } \\ \text { nC- } \\ 06 \\ \hline \end{array}$	$\begin{aligned} & 642 . \\ & 17 \end{aligned}$	300	$\begin{aligned} & \hline 606 \\ & 8.16 \end{aligned}$	$\begin{aligned} & 57.5 \\ & 3 \end{aligned}$	$\begin{array}{\|l\|} \hline 79.1 \\ 4 \end{array}$	$\begin{aligned} & 892 . \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 280 \\ & 8.84 \end{aligned}$	$\begin{aligned} & 139 . \\ & 72 \end{aligned}$	$\begin{aligned} & 41.0 \\ & 3 \end{aligned}$	300	0	$\begin{array}{\|l\|} \hline 113 \\ 28.9 \\ 9 \end{array}$
$\begin{array}{\|l} \hline 168 \\ \text { A- } \\ \text { Grai } \\ \text { nC- } \\ 07 \\ \hline \end{array}$	300	$\begin{aligned} & 178 . \\ & 46 \end{aligned}$	$\begin{array}{\|l\|} \hline 88.1 \\ 8 \end{array}$	$\begin{aligned} & 147 . \\ & 41 \end{aligned}$	51.3	300	300	$\begin{aligned} & 263 . \\ & 73 \end{aligned}$	$\begin{aligned} & 73.2 \\ & 6 \end{aligned}$	$\begin{aligned} & 774 . \\ & 27 \end{aligned}$	0	$\begin{aligned} & 247 \\ & 6.61 \end{aligned}$
$\begin{array}{\|l} \hline 168 \\ \text { A- } \\ \text { Grai } \\ \text { nC- } \\ 08 \\ \hline \end{array}$	300	$\begin{aligned} & \hline 252 . \\ & 73 \end{aligned}$	$\begin{aligned} & \hline 195 . \\ & 54 \end{aligned}$	$\begin{aligned} & \hline 85.2 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 77.8 \\ 2 \end{array}$	$\begin{aligned} & 58.5 \\ & 7 \end{aligned}$	5.6	$\begin{aligned} & \hline 429 . \\ & 31 \end{aligned}$	$\begin{aligned} & \hline 50.9 \\ & 2 \\ & \hline \end{aligned}$	300	0	$\begin{aligned} & \hline 175 \\ & 5.7 \end{aligned}$
$\begin{array}{\|l\|} \hline 168 \\ \text { A- } \\ \text { Grai } \\ \text { nC- } \\ 09 \\ \hline \end{array}$	300	$\begin{aligned} & 100 . \\ & 76 \end{aligned}$	$\begin{aligned} & 103 . \\ & 18 \end{aligned}$	$\begin{array}{\|l\|} \hline 11.9 \\ 6 \end{array}$	$\begin{aligned} & \hline 65.7 \\ & 4 \end{aligned}$	300	$\begin{aligned} & 100 . \\ & 34 \end{aligned}$	$\begin{aligned} & 786 . \\ & 41 \end{aligned}$	$\begin{aligned} & \hline 60.8 \\ & 6 \end{aligned}$	$\begin{aligned} & 751 . \\ & 66 \end{aligned}$	0	$\begin{array}{\|l\|} \hline 258 \\ 0.91 \end{array}$
$\begin{array}{\|l\|} \hline 168 \\ \text { A- } \\ \text { Grai } \\ \text { nC- } \\ 10 \\ \hline \end{array}$	$\begin{aligned} & \hline 402 . \\ & 83 \end{aligned}$	300	$\begin{aligned} & 121 . \\ & 66 \end{aligned}$	$\begin{aligned} & 216 . \\ & 62 \end{aligned}$	$\begin{aligned} & \hline 51.2 \\ & 1 \end{aligned}$	300	$\begin{aligned} & 46.1 \\ & 4 \end{aligned}$	$\begin{aligned} & 282 . \\ & 79 \end{aligned}$	$\begin{aligned} & \hline 63.3 \\ & 4 \end{aligned}$	300	0	$\begin{array}{\|l\|} \hline 208 \\ 4.59 \\ \hline \end{array}$
$\begin{array}{\|l} \hline 3415 \\ \text { A- } \\ \text { Grai } \\ \text { nA- } \\ 01 \\ \hline \end{array}$	300	$\begin{aligned} & \hline 342 . \\ & 17 \end{aligned}$	$\begin{aligned} & 511 . \\ & 46 \end{aligned}$	$\begin{aligned} & 144 . \\ & 04 \end{aligned}$	$\begin{array}{\|l\|} \hline 44.4 \\ 2 \end{array}$	$\begin{aligned} & 253 . \\ & 59 \end{aligned}$	$\begin{aligned} & 199 . \\ & 68 \end{aligned}$	$\begin{aligned} & \hline 619 . \\ & 86 \end{aligned}$	$\begin{aligned} & \hline 32.4 \\ & 6 \end{aligned}$	300	0	$\begin{array}{\|l\|} \hline 274 \\ 7.68 \\ \hline \end{array}$
$\begin{aligned} & \hline 3415 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nA- } \\ & 02 \\ & \hline \end{aligned}$	$\begin{aligned} & 171 . \\ & 37 \end{aligned}$	$\begin{aligned} & 891 . \\ & 67 \end{aligned}$	$\begin{aligned} & 110 . \\ & 72 \end{aligned}$	$\begin{array}{\|l\|} \hline 170 . \\ 33 \end{array}$	$\begin{array}{\|l\|} \hline 47.4 \\ 6 \end{array}$	$\begin{aligned} & 581 . \\ & 52 \end{aligned}$	$\begin{aligned} & \hline 52.1 \\ & 4 \end{aligned}$	300	$\begin{aligned} & \hline 17.3 \\ & 8 \end{aligned}$	$\begin{aligned} & 300 \\ & 7.31 \end{aligned}$	0	$\begin{array}{\|l\|} \hline 534 \\ 9.9 \\ \hline \end{array}$
$\begin{array}{\|l\|} \hline 3415 \\ \text { A- } \\ \text { Grai } \\ \text { nA- } \\ 03 \\ \hline \end{array}$	$\begin{aligned} & 233 . \\ & 78 \end{aligned}$	$\begin{array}{\|l\|} \hline 241 \\ 8.88 \end{array}$	$\begin{aligned} & 166 . \\ & 21 \end{aligned}$	$\begin{aligned} & 102 . \\ & 71 \end{aligned}$	$\begin{aligned} & \hline 68.0 \\ & 4 \end{aligned}$	$\begin{array}{\|l} \hline 331 . \\ 26 \end{array}$	$\begin{aligned} & \hline 141 . \\ & 73 \end{aligned}$	$\begin{aligned} & 952 . \\ & 95 \end{aligned}$	$\begin{aligned} & \hline 83.2 \\ & 7 \end{aligned}$	300	0	$\begin{array}{\|l\|} \hline 479 \\ 8.83 \end{array}$
$\begin{aligned} & 3415 \\ & \text { A- } \\ & \text { Grai } \end{aligned}$	300	300	$\begin{aligned} & 329 . \\ & 57 \end{aligned}$	$\begin{aligned} & 228 . \\ & 22 \end{aligned}$	$\begin{array}{\|l} \hline 106 . \\ 79 \end{array}$	300	$\begin{aligned} & 333 . \\ & 52 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 108 \\ & 5.59 \end{aligned}$	$\begin{aligned} & \hline 65.7 \\ & 9 \end{aligned}$	$\begin{aligned} & 834 . \\ & 34 \end{aligned}$	0	$\begin{aligned} & 388 \\ & 3.82 \end{aligned}$

$\begin{aligned} & \text { nA- } \\ & 04 \end{aligned}$												
$\begin{aligned} & 3415 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nA- } \\ & 05 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 359 \\ 3.9 \\ \hline \end{array}$	300	300	$\begin{aligned} & 220 . \\ & 77 \end{aligned}$	$\begin{aligned} & 66.9 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 569 . \\ 46 \end{array}$	$\begin{aligned} & 130 . \\ & 34 \end{aligned}$	300	$\begin{aligned} & 81.7 \\ & 7 \end{aligned}$	300	0	$\begin{array}{l\|} \hline 586 \\ 3.15 \end{array}$
$\begin{aligned} & 3415 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nA- } \\ & 06 \\ & \hline \end{aligned}$	$\begin{aligned} & 187 \\ & 2.32 \end{aligned}$	$\begin{aligned} & 208 . \\ & 13 \end{aligned}$	$\begin{aligned} & 387 . \\ & 19 \end{aligned}$	$\begin{aligned} & 100 . \\ & 36 \end{aligned}$	$\begin{aligned} & 82.2 \\ & 6 \end{aligned}$	300	$\begin{aligned} & 202 . \\ & 73 \end{aligned}$	$\begin{aligned} & 153 . \\ & 98 \end{aligned}$	$\begin{aligned} & 47.7 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 252 \\ & 4.71 \end{aligned}$	0	$\begin{array}{l\|} \hline 587 \\ 9.41 \end{array}$
$\begin{aligned} & 3415 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nA- } \\ & 07 \\ & \hline \end{aligned}$	$\begin{aligned} & 256 . \\ & 61 \end{aligned}$	300	$\begin{aligned} & \hline 247 . \\ & 7 \end{aligned}$	$\begin{aligned} & \hline 111 . \\ & 81 \end{aligned}$	$\begin{array}{\|l\|} \hline 70.7 \\ 9 \end{array}$	$\begin{aligned} & \hline 226 . \\ & 58 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 114 . \\ & 53 \end{aligned}$	$\begin{aligned} & \hline 104 . \\ & 72 \end{aligned}$	$\begin{aligned} & \hline 18.4 \\ & 7 \end{aligned}$	300	0	$\begin{aligned} & 175 \\ & 1.21 \end{aligned}$
$\begin{aligned} & 3415 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nA- } \\ & 08 \\ & \hline \end{aligned}$	300	$\begin{array}{\|l\|} \hline 107 \\ 7.28 \\ \hline \end{array}$	$\begin{aligned} & \hline 177 . \\ & 07 \end{aligned}$	$\begin{aligned} & 139 . \\ & 54 \end{aligned}$	$\begin{aligned} & \hline 64.6 \\ & 6 \end{aligned}$	300	$\begin{aligned} & \hline 180 . \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 351 . \\ & 8 \end{aligned}$	$\begin{aligned} & 45.4 \\ & 7 \end{aligned}$	$\begin{aligned} & \hline 246 . \\ & 48 \end{aligned}$	0	$\begin{array}{\|l\|} \hline 288 \\ \hline 2.6 \\ \hline \end{array}$
$\begin{aligned} & 3415 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nA- } \\ & 09 \\ & \hline \end{aligned}$	300	$\begin{aligned} & 246 . \\ & 75 \end{aligned}$	$\begin{aligned} & 135 . \\ & 38 \end{aligned}$	300	$\begin{aligned} & \hline 75.7 \\ & 1 \end{aligned}$	300	$\begin{aligned} & \hline 214 . \\ & 68 \end{aligned}$	$\begin{aligned} & 253 . \\ & 7 \end{aligned}$	$\begin{aligned} & 41.8 \\ & 1 \end{aligned}$	300	0	$\begin{array}{l\|} \hline 216 \\ 8.03 \\ \hline \end{array}$
$\begin{aligned} & 3415 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nA- } \\ & 10 \\ & \hline \end{aligned}$	300	$\begin{aligned} & \hline 145 \\ & 9.79 \end{aligned}$	$\begin{aligned} & 329 . \\ & 92 \end{aligned}$	300	$\begin{aligned} & 82.2 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 348 \\ 9.87 \end{array}$	$\begin{aligned} & \hline 54.9 \\ & 3 \end{aligned}$	300	$\begin{aligned} & 60.6 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 296 . \\ & 08 \end{aligned}$	0	$\begin{array}{l\|} \hline 667 \\ 3.43 \\ \hline \end{array}$
$\begin{aligned} & 153 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nC- } \\ & 01 \\ & \hline \end{aligned}$	300	300	0.71	$\begin{aligned} & 52.5 \\ & 9 \end{aligned}$	$\begin{aligned} & 46.1 \\ & 2 \end{aligned}$	$\begin{aligned} & 501 . \\ & 71 \end{aligned}$	1.94	$\begin{aligned} & 190 . \\ & 94 \end{aligned}$	0.69	$\begin{aligned} & 476 . \\ & 58 \end{aligned}$	0	$\begin{aligned} & 187 \\ & 1.28 \end{aligned}$
$\begin{aligned} & 153 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nC- } \\ & 02 \\ & \hline \end{aligned}$	300	300	4.32	$\begin{aligned} & \hline 129 . \\ & 76 \end{aligned}$	$\begin{aligned} & \hline 50.2 \\ & 6 \end{aligned}$	300	$\begin{aligned} & 10.5 \\ & 4 \end{aligned}$	300	2.79	$\begin{aligned} & \hline 181 . \\ & 25 \end{aligned}$	0	$\begin{aligned} & \hline 157 \\ & 8.92 \end{aligned}$
$\begin{aligned} & 153 \\ & \text { A- } \\ & \text { Grai } \end{aligned}$	300	300	$\begin{aligned} & 234 . \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 89.7 \\ & 8 \end{aligned}$	73.9	$\begin{aligned} & \hline 284 . \\ & 16 \end{aligned}$	$\begin{array}{\|l\|} \hline 211 \\ 32.3 \\ 9 \\ \hline \end{array}$	$\begin{aligned} & \hline 248 . \\ & 6 \end{aligned}$	1.51	$\begin{aligned} & 429 . \\ & 3 \end{aligned}$	0	$\begin{aligned} & \hline 230 \\ & 93.8 \\ & 4 \\ & \hline \end{aligned}$

$\begin{aligned} & \hline \mathrm{nC}- \\ & 03 \\ & \hline \end{aligned}$												
$\begin{aligned} & 153 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nC- } \\ & 04 \\ & \hline \end{aligned}$	$\begin{aligned} & 376 . \\ & 84 \\ & \hline \end{aligned}$	300	$\begin{aligned} & 259 . \\ & 87 \end{aligned}$	$\begin{aligned} & 189 . \\ & 83 \end{aligned}$	$\begin{aligned} & \hline 62.4 \\ & 6 \end{aligned}$	$\begin{aligned} & 247 . \\ & 15 \end{aligned}$	7.29	300	$\begin{aligned} & 57.1 \\ & 9 \end{aligned}$	300	0	$\begin{aligned} & 210 \\ & 0.63 \end{aligned}$
$\begin{aligned} & 153 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nC- } \\ & 05 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 155 \\ 9.31 \end{array}$	300	$\begin{aligned} & 447 . \\ & 43 \end{aligned}$	67.1	$\begin{aligned} & 70.2 \\ & 7 \end{aligned}$	$\begin{aligned} & 743 . \\ & 2 \end{aligned}$	9.51	300	$\begin{aligned} & \hline 60.1 \\ & 1 \end{aligned}$	300	0	$\begin{aligned} & 385 \\ & 6.93 \end{aligned}$
$\begin{aligned} & 153 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nC- } \\ & 06 \\ & \hline \end{aligned}$	300	300	8.99	$\begin{array}{\|l} \hline 74.7 \\ 1 \end{array}$	$\begin{array}{\|l\|} \hline 57.9 \\ 5 \end{array}$	$\begin{array}{\|l\|} \hline 499 \\ 7.39 \end{array}$	4.5	300	$\begin{array}{\|l\|} \hline 33.6 \\ 5 \end{array}$	300	0	$\begin{aligned} & \hline 637 \\ & 7.19 \end{aligned}$
$\begin{aligned} & 153 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nC- } \\ & 07 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 458 . \\ & 5 \end{aligned}$	300	$\begin{aligned} & 19.6 \\ & 5 \end{aligned}$	74.4	$\begin{aligned} & \hline 45.6 \\ & 4 \end{aligned}$	300	3.82	$\begin{aligned} & \hline 196 . \\ & 75 \end{aligned}$	$\begin{array}{\|l\|} \hline 47.3 \\ 7 \end{array}$	$\begin{aligned} & \hline 317 . \\ & 52 \end{aligned}$	0	$\begin{aligned} & \hline 176 \\ & 3.65 \end{aligned}$
$\begin{aligned} & 153 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nC- } \\ & 08 \\ & \hline \end{aligned}$	300	300	$\begin{aligned} & 203 . \\ & 25 \end{aligned}$	$\begin{aligned} & 98.3 \\ & 4 \end{aligned}$	$\begin{array}{\|l} \hline 58.2 \\ 3 \end{array}$	$\begin{aligned} & 159 . \\ & 48 \end{aligned}$	23.6	300	$\begin{array}{\|l\|} \hline 50.3 \\ 9 \end{array}$	$\begin{aligned} & \hline 297 . \\ & 93 \end{aligned}$	0	$\begin{aligned} & \hline 179 \\ & 1.22 \end{aligned}$
$\begin{aligned} & 153 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nC- } \\ & 09 \end{aligned}$	300	$\begin{aligned} & \hline 258 . \\ & 76 \end{aligned}$	$\begin{aligned} & 209 . \\ & 74 \end{aligned}$	$\begin{aligned} & \hline 39.3 \\ & 6 \end{aligned}$	$\begin{array}{\|l} \hline 74.6 \\ 5 \end{array}$	300	300	300	$\begin{aligned} & \hline 62.9 \\ & 4 \end{aligned}$	300	0	$\begin{aligned} & 214 \\ & 5.45 \end{aligned}$
$\begin{aligned} & 153 \\ & \text { A- } \\ & \text { Grai } \\ & \text { nC- } \\ & 10 \\ & \hline \end{aligned}$	300	$\begin{aligned} & 661 . \\ & 85 \end{aligned}$	27.6	$\begin{aligned} & 22.6 \\ & 6 \end{aligned}$	94.5	300	300	$\begin{aligned} & 289 . \\ & 38 \end{aligned}$	$\begin{aligned} & 51.5 \\ & 6 \end{aligned}$	$\begin{aligned} & 174 . \\ & 11 \end{aligned}$	0	$\begin{aligned} & 222 \\ & 1.66 \end{aligned}$
$\begin{aligned} & 886 \\ & \text { B- } \\ & \text { Grai } \\ & \text { nA- } \\ & 01 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 288 . \\ & 42 \end{aligned}$	$\begin{aligned} & 351 . \\ & 12 \end{aligned}$	$\begin{aligned} & 204 . \\ & 52 \end{aligned}$	$\begin{aligned} & 100 . \\ & 91 \end{aligned}$	$\begin{aligned} & 54.0 \\ & 4 \end{aligned}$	$\begin{array}{\|l\|} \hline 143 \\ 51.2 \\ 8 \end{array}$	$\begin{aligned} & 232 . \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 436 . \\ & 85 \end{aligned}$	3.9	$\begin{aligned} & 175 . \\ & 45 \end{aligned}$	0	$\begin{aligned} & 161 \\ & 98.6 \\ & 1 \end{aligned}$
$\begin{aligned} & 886 \\ & \text { B- } \\ & \text { Grai } \end{aligned}$	300	$\begin{array}{\|l\|} \hline 355 \\ 4.28 \end{array}$	$\begin{aligned} & 605 . \\ & 11 \end{aligned}$	$\begin{aligned} & 82.5 \\ & 3 \end{aligned}$	$\begin{aligned} & 127 . \\ & 59 \end{aligned}$	300	$\begin{aligned} & 156 . \\ & 14 \end{aligned}$	$\begin{aligned} & \hline 118 . \\ & 51 \end{aligned}$	2.68	300	0	$\begin{aligned} & \hline 554 \\ & 6.84 \end{aligned}$

nA- 02												
886 B- Grai	149 nA-		300		545. 37 03				82.6 1	105. 19	300	

$\begin{aligned} & \hline \text { nB- } \\ & 01 \\ & \hline \end{aligned}$												
$\begin{aligned} & \text { NB0 } \\ & 36- \\ & \text { Grai } \\ & \text { nB- } \\ & 02 \\ & \hline \end{aligned}$	$\begin{aligned} & 165 . \\ & 26 \end{aligned}$	300	7.03	$\begin{aligned} & 133 . \\ & 95 \end{aligned}$	68.7	300	$\begin{aligned} & 13.7 \\ & 3 \end{aligned}$	300	2.81	300	0	$\begin{aligned} & 159 \\ & 1.48 \end{aligned}$
$\begin{aligned} & \text { NB0 } \\ & 36- \\ & \text { Grai } \\ & \text { nB- } \\ & 03 \\ & \hline \end{aligned}$	$\begin{aligned} & 129 . \\ & 62 \\ & \hline \end{aligned}$	300	9.86	$\begin{aligned} & 117 . \\ & 91 \end{aligned}$	$\begin{aligned} & 73.7 \\ & 5 \end{aligned}$	300	7.49	$\begin{aligned} & 892 . \\ & 94 \end{aligned}$	3.74	300	0	$\begin{array}{l\|} \hline 213 \\ 5.31 \\ \hline \end{array}$
$\begin{aligned} & \hline \text { NB0 } \\ & 36- \\ & \text { Grai } \\ & \text { nB- } \\ & 04 \\ & \hline \end{aligned}$	$\begin{aligned} & 130 . \\ & 11 \end{aligned}$	300	$\begin{aligned} & \hline 11.7 \\ & 9 \end{aligned}$	$\begin{array}{\|l} \hline 368 . \\ 75 \end{array}$	$\begin{array}{\|l\|} \hline 85.8 \\ 1 \end{array}$	300	6.55	300	4.32	300	0	$\begin{array}{\|l\|} \hline 180 \\ 7.33 \\ \hline \end{array}$
$\begin{aligned} & \hline \text { NB0 } \\ & 36- \\ & \text { Grai } \\ & \text { nB- } \\ & 05 \\ & \hline \end{aligned}$	300	300	$\begin{aligned} & 140 . \\ & 13 \end{aligned}$	$\begin{aligned} & 103 . \\ & 66 \end{aligned}$	$\begin{aligned} & 46.3 \\ & 2 \end{aligned}$	$\begin{array}{l\|} \hline 240 \\ 52.7 \end{array}$	2.43	$\begin{aligned} & 159 . \\ & 23 \end{aligned}$	$\begin{array}{\|l\|} \hline 30.9 \\ 4 \end{array}$	300	0	$\begin{aligned} & \hline 254 \\ & 35.4 \\ & 1 \end{aligned}$
$\begin{aligned} & \hline \text { NB0 } \\ & 36- \\ & \text { Grai } \\ & \text { nB- } \\ & 06 \\ & \hline \end{aligned}$	$\begin{aligned} & 315 . \\ & 1 \end{aligned}$	300	$\begin{aligned} & \hline 47.4 \\ & 8 \end{aligned}$	$\begin{array}{\|l\|} \hline 90.1 \\ 7 \end{array}$	62.5	$\begin{aligned} & 234 . \\ & 76 \end{aligned}$	4.35	300	7.05	300	0	$\begin{aligned} & 166 \\ & 1.46 \end{aligned}$
$\begin{aligned} & \text { NB0 } \\ & 36- \\ & \text { Grai } \\ & \text { nA- } \\ & 01 \end{aligned}$	300	$\begin{array}{\|l} \hline 232 . \\ 59 \end{array}$	$\begin{aligned} & \hline 62.7 \\ & 3 \end{aligned}$	$\begin{array}{\|l} \hline 81.4 \\ 3 \end{array}$	$\begin{array}{\|l\|} \hline 110 \\ 7.6 \\ \hline \end{array}$	300	$\begin{aligned} & \hline 112 . \\ & 62 \end{aligned}$	$\begin{aligned} & 390 . \\ & 54 \end{aligned}$	$\begin{array}{\|l\|} \hline 47.9 \\ 4 \end{array}$	300	0	$\begin{array}{\|l\|} \hline 293 \\ 5.45 \end{array}$
$\begin{aligned} & \text { NB0 } \\ & 36- \\ & \text { Grai } \\ & \text { nA- } \\ & 02 \\ & \hline \end{aligned}$	300	300	91.1	$\begin{array}{\|l} \hline 81.3 \\ 7 \end{array}$	$\begin{aligned} & 481 . \\ & 28 \end{aligned}$	300	$\begin{aligned} & 450 . \\ & 24 \end{aligned}$	$\begin{aligned} & 233 . \\ & 93 \end{aligned}$	$\begin{array}{\|l\|} \hline 33.0 \\ 3 \end{array}$	300	0	$\begin{array}{\|l\|} \hline 257 \\ 0.95 \end{array}$
$\begin{aligned} & \text { NB0 } \\ & 36- \\ & \text { Grai } \\ & \text { nA- } \\ & 03 \\ & \hline \end{aligned}$	300	$\begin{aligned} & 944 . \\ & 28 \end{aligned}$	$\begin{aligned} & \hline 131 . \\ & 21 \end{aligned}$	$\begin{aligned} & 127 . \\ & 49 \end{aligned}$	$\begin{array}{\|l\|} \hline 54.8 \\ 8 \end{array}$	300	$\begin{aligned} & \hline 311 . \\ & 81 \end{aligned}$	300	$\begin{aligned} & \hline 33.0 \\ & 7 \end{aligned}$	$\begin{aligned} & \hline 622 . \\ & 65 \end{aligned}$	0	$\begin{array}{\|l\|} \hline 312 \\ 5.39 \\ \hline \end{array}$
$\begin{aligned} & \hline \text { NB0 } \\ & 36- \\ & \text { Grai } \\ & \hline \end{aligned}$	$\begin{aligned} & 405 . \\ & 66 \end{aligned}$	$\begin{aligned} & \hline 138 \\ & 9.78 \end{aligned}$	$\begin{aligned} & 385 . \\ & 19 \end{aligned}$	$\begin{aligned} & 465 . \\ & 88 \end{aligned}$	$\begin{array}{\|l\|} \hline 52.1 \\ \hline \end{array}$	300	$\begin{aligned} & \hline 113 . \\ & 45 \end{aligned}$	$\begin{aligned} & 237 . \\ & 7 \end{aligned}$	7.65	$\begin{aligned} & \hline 901 . \\ & 05 \end{aligned}$	0	$\begin{aligned} & \hline 425 \\ & 8.49 \end{aligned}$

$\begin{aligned} & \hline \text { nA- } \\ & 04 \end{aligned}$												
$\begin{array}{\|l} \hline \text { NB0 } \\ 36- \\ \text { Grai } \\ \text { nA- } \\ 05 \\ \hline \end{array}$	$\begin{aligned} & 123 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 804 . \\ & 4 \end{aligned}$	$\begin{aligned} & 405 . \\ & 73 \end{aligned}$	$\begin{aligned} & 203 \\ & 4.6 \end{aligned}$	63.9	300	300	$\begin{aligned} & 268 . \\ & 09 \end{aligned}$	$\begin{aligned} & 49.7 \\ & 7 \end{aligned}$	$\begin{aligned} & 172 . \\ & 9 \end{aligned}$	0	$\begin{aligned} & 562 \\ & 9.59 \end{aligned}$
$\begin{array}{\|l\|} \hline \text { NB0 } \\ 36- \\ \text { Grai } \\ \text { nA- } \\ 06 \\ \hline \end{array}$	$\begin{aligned} & 563 . \\ & 23 \end{aligned}$	300	300	300	$\begin{aligned} & 59.1 \\ & 7 \end{aligned}$	300	300	$\begin{aligned} & \hline 139 \\ & 8.58 \end{aligned}$	8.64	$\begin{array}{\|l} \hline 957 . \\ 48 \end{array}$	0	$\begin{aligned} & 448 \\ & 7.1 \end{aligned}$
$\begin{aligned} & \hline \text { NB0 } \\ & 36- \\ & \text { Grai } \\ & \text { nA- } \\ & 07 \\ & \hline \end{aligned}$	$\begin{aligned} & 169 . \\ & 29 \end{aligned}$	$\begin{aligned} & 550 . \\ & 79 \end{aligned}$	$\begin{array}{\|l\|} \hline 453 . \\ 44 \end{array}$	$\begin{aligned} & 666 . \\ & 65 \end{aligned}$	$\begin{aligned} & \hline 91.7 \\ & 8 \end{aligned}$	300	300	$\begin{aligned} & 868 . \\ & 64 \end{aligned}$	$\begin{aligned} & 26.8 \\ & 3 \end{aligned}$	300	0	$\begin{aligned} & \hline 372 \\ & 7.42 \end{aligned}$
$\begin{aligned} & \hline \text { NB0 } \\ & 36- \\ & \text { Grai } \\ & \text { nA- } \\ & 08 \end{aligned}$	142	300	$\begin{aligned} & 103 \\ & 1.82 \end{aligned}$	$\begin{aligned} & 117 . \\ & 69 \end{aligned}$	$\begin{aligned} & \hline 65.4 \\ & 9 \end{aligned}$	$\begin{aligned} & 383 . \\ & 65 \end{aligned}$	$\begin{aligned} & \hline 624 . \\ & 83 \end{aligned}$	300	$\begin{aligned} & \hline 37.4 \\ & 8 \end{aligned}$	$\begin{aligned} & 991 . \\ & 79 \end{aligned}$	0	$\begin{aligned} & 399 \\ & 4.75 \end{aligned}$
$\begin{aligned} & 490- \\ & \text { Grai } \\ & \text { nA- } \\ & 01 \\ & \hline \end{aligned}$	$\begin{aligned} & 163 . \\ & 9 \end{aligned}$	$\begin{aligned} & 565 . \\ & 76 \end{aligned}$	$\begin{aligned} & 173 . \\ & 06 \end{aligned}$	$\begin{aligned} & 755 . \\ & 32 \end{aligned}$	$\begin{array}{\|l\|} \hline 43.3 \\ 5 \end{array}$	$\begin{aligned} & 196 . \\ & 57 \end{aligned}$	$\begin{aligned} & 108 . \\ & 48 \end{aligned}$	$\begin{aligned} & 549 . \\ & 64 \end{aligned}$	31.3	$\begin{aligned} & 566 . \\ & 52 \end{aligned}$	0	$\begin{aligned} & 315 \\ & 3.9 \end{aligned}$
$\begin{aligned} & 490- \\ & \text { Grai } \\ & \text { nA- } \\ & 02 \\ & \hline \end{aligned}$	$\begin{aligned} & 312 . \\ & 94 \end{aligned}$	300	$\begin{array}{\|l\|} \hline 208 . \\ 83 \end{array}$	$\begin{aligned} & \hline 184 . \\ & 01 \end{aligned}$	$\begin{aligned} & \hline 56.3 \\ & 6 \end{aligned}$	300	$\begin{aligned} & \hline 349 . \\ & 43 \end{aligned}$	$323 .$ 1	$\begin{aligned} & 38.7 \\ & 1 \end{aligned}$	300	0	$\begin{aligned} & 237 \\ & 3.38 \end{aligned}$
$\begin{aligned} & \hline 490- \\ & \text { Grai } \\ & \text { nA- } \\ & 03 \\ & \hline \end{aligned}$	300	$\begin{aligned} & 268 . \\ & 87 \end{aligned}$	$\begin{aligned} & 166 . \\ & 87 \end{aligned}$	$\begin{aligned} & 154 . \\ & 82 \end{aligned}$	$\begin{array}{\|l\|} \hline 121 . \\ 74 \end{array}$	300	$\begin{aligned} & 152 . \\ & 66 \end{aligned}$	300	$\begin{aligned} & \hline 43.1 \\ & 1 \end{aligned}$	300	0	$\begin{aligned} & \hline 210 \\ & 8.07 \end{aligned}$
$\begin{aligned} & \hline 490- \\ & \text { Grai } \\ & \text { nA- } \\ & 04 \\ & \hline \end{aligned}$	300	$\begin{array}{\|l\|} \hline 339 . \\ 9 \end{array}$	$\begin{aligned} & 97.2 \\ & 1 \end{aligned}$	300	$\begin{aligned} & \hline 62.0 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 112 \\ & 1.98 \end{aligned}$	$\begin{aligned} & 194 . \\ & 96 \end{aligned}$	$\begin{aligned} & \hline 222 \\ & 4.89 \end{aligned}$	$\begin{aligned} & \hline 67.9 \\ & 3 \end{aligned}$	300	0	$\begin{aligned} & \hline 500 \\ & 8.93 \end{aligned}$
$\begin{aligned} & \hline 490- \\ & \text { Grai } \\ & \text { nA- } \\ & 05 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 114 \\ & 5.85 \end{aligned}$	$\begin{aligned} & 285 . \\ & 18 \end{aligned}$	$\begin{aligned} & \hline 826 . \\ & 13 \end{aligned}$	300	$\begin{aligned} & 52.6 \\ & 1 \end{aligned}$	300	300	300	72.9	$\begin{aligned} & \hline 270 . \\ & 72 \end{aligned}$	0	$\begin{aligned} & 385 \\ & 3.39 \end{aligned}$
$\begin{aligned} & \text { 490- } \\ & \text { Grai } \\ & \text { nA- } \\ & 06 \end{aligned}$	$\begin{aligned} & \hline 353 \\ & 9.55 \end{aligned}$	$\begin{array}{\|l\|} \hline 135 \\ 90.1 \\ 3 \end{array}$	$\begin{aligned} & 127 . \\ & 23 \end{aligned}$	$\begin{aligned} & 132 . \\ & 74 \end{aligned}$	70.1	300	$\begin{aligned} & 450 . \\ & 23 \end{aligned}$	$\begin{aligned} & \hline 281 . \\ & 35 \end{aligned}$	$\begin{aligned} & \hline 54.2 \\ & 9 \end{aligned}$	300	0	$\begin{aligned} & 188 \\ & 45.6 \\ & 2 \end{aligned}$

490- Grai nA- 07	$\begin{aligned} & 654 . \\ & 74 \end{aligned}$	300	$\begin{aligned} & 100 . \\ & 6 \end{aligned}$	300	$\begin{aligned} & 97.0 \\ & 4 \end{aligned}$	$\begin{aligned} & 422 . \\ & 87 \end{aligned}$	$\begin{aligned} & \hline 152 \\ & 0.16 \end{aligned}$	$\begin{array}{\|l\|} \hline 338 \\ 9.28 \end{array}$	$\begin{aligned} & 62.5 \\ & 2 \end{aligned}$	300	0	$\begin{aligned} & 714 \\ & 7.21 \end{aligned}$
$\begin{aligned} & 490- \\ & \text { Grai } \\ & \text { nA- } \\ & 08 \end{aligned}$	300	$\begin{aligned} & 401 . \\ & 01 \end{aligned}$	$\begin{array}{\|l\|} \hline 305 . \\ 65 \\ \hline \end{array}$	$\begin{aligned} & 383 . \\ & 77 \end{aligned}$	$\begin{aligned} & \hline 123 . \\ & 66 \\ & \hline \end{aligned}$	300	$\begin{aligned} & 106 . \\ & 67 \end{aligned}$	$\begin{aligned} & 567 . \\ & 5 \end{aligned}$	31.6	$\begin{array}{\|l\|} \hline 173 \\ 4.9 \\ \hline \end{array}$	0	$\begin{aligned} & 425 \\ & 4.76 \end{aligned}$
157- Grai nA- 01	$\begin{aligned} & \hline 625 \\ & 8.26 \end{aligned}$	300	$\begin{aligned} & 117 . \\ & 21 \end{aligned}$	$\begin{aligned} & 581 . \\ & 13 \end{aligned}$	50.9	300	$\begin{aligned} & 99.7 \\ & 2 \end{aligned}$	300	$\begin{aligned} & 16.0 \\ & 9 \end{aligned}$	300	0	$\begin{aligned} & 832 \\ & 3.31 \end{aligned}$
157- Grai nA- 02	$\begin{aligned} & \hline 562 . \\ & 16 \end{aligned}$	300	$\begin{aligned} & \hline 86.4 \\ & 6 \end{aligned}$	300	$\begin{array}{\|l\|} \hline 83.8 \\ 3 \end{array}$	300	$\begin{aligned} & 125 . \\ & 97 \end{aligned}$	300	$\begin{aligned} & \hline 14.2 \\ & 7 \end{aligned}$	$\begin{aligned} & 606 . \\ & 39 \end{aligned}$	0	$\begin{aligned} & \hline 267 \\ & 9.08 \end{aligned}$
157- Grai nA- 03	300	$\begin{array}{\|l} \hline 702 . \\ 48 \\ \hline \end{array}$	$\begin{aligned} & 407 . \\ & 77 \end{aligned}$	$\begin{aligned} & 894 . \\ & 43 \end{aligned}$	$\begin{aligned} & \hline 67.9 \\ & 3 \end{aligned}$	300	$\begin{aligned} & \hline 465 \\ & 8.47 \end{aligned}$	300	11.1	$\begin{array}{\|l} \hline 495 . \\ 85 \end{array}$	0	$\begin{aligned} & \hline 813 \\ & 8.09 \end{aligned}$
157- Grai nA- 04	300	$\begin{aligned} & 439 . \\ & 85 \end{aligned}$	$\begin{aligned} & 592 . \\ & 55 \end{aligned}$	$\begin{aligned} & \hline 339 . \\ & 58 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 58.8 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 322 \\ & 3.86 \end{aligned}$	300	$\begin{aligned} & 227 . \\ & 29 \end{aligned}$	$\begin{aligned} & \hline 69.9 \\ & 6 \end{aligned}$	300	0	$\begin{aligned} & 585 \\ & 1.94 \end{aligned}$
157- Grai nA- 05	$\begin{aligned} & 126 \\ & 3.77 \end{aligned}$	300	$\begin{aligned} & 184 . \\ & 65 \end{aligned}$	$\begin{array}{\|l} \hline 220 . \\ 43 \end{array}$	$\begin{aligned} & 61.3 \\ & 5 \end{aligned}$	300	$\begin{aligned} & 160 . \\ & 13 \end{aligned}$	$\begin{aligned} & 475 . \\ & 87 \end{aligned}$	$\begin{aligned} & 70.2 \\ & 7 \end{aligned}$	300	0	$\begin{aligned} & 333 \\ & 6.47 \end{aligned}$
$\begin{aligned} & \hline 157- \\ & \text { Grai } \\ & \text { nA- } \\ & 06 \\ & \hline \end{aligned}$	300	$\begin{aligned} & 750 . \\ & 5 \end{aligned}$	$\begin{aligned} & 545 . \\ & 13 \end{aligned}$	$\begin{aligned} & \hline 171 . \\ & 66 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 74.1 \\ & 5 \end{aligned}$	300	$\begin{aligned} & 191 . \\ & 87 \end{aligned}$	$\begin{aligned} & 191 . \\ & 87 \end{aligned}$	$\begin{aligned} & \hline 66.5 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 324 \\ 8.81 \end{array}$	0	$\begin{aligned} & 584 \\ & 0.5 \end{aligned}$
157- Grai nA- 07	$\begin{aligned} & 398 . \\ & 48 \end{aligned}$	$\begin{aligned} & \hline 259 . \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 179 . \\ & 4 \end{aligned}$	300	$\begin{array}{\|l\|} \hline 71.4 \\ 8 \end{array}$	$\begin{aligned} & 484 . \\ & 52 \end{aligned}$	$\begin{aligned} & \hline 538 \\ & 7.86 \end{aligned}$	300	$\begin{aligned} & \hline 40.6 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 143 . \\ & 71 \end{aligned}$	0	$\begin{aligned} & \hline 756 \\ & 5.54 \end{aligned}$
157- Grai nA- 08	300	300	$\begin{aligned} & 65.2 \\ & 5 \end{aligned}$	$\begin{aligned} & 112 . \\ & 63 \end{aligned}$	56.3	$\begin{aligned} & 172 . \\ & 66 \end{aligned}$	$\begin{aligned} & 164 . \\ & 24 \end{aligned}$	$\begin{aligned} & 153 . \\ & 55 \end{aligned}$	6.5	$\begin{array}{\|l} \hline 106 . \\ 7 \end{array}$	0	$\begin{aligned} & 143 \\ & 7.83 \end{aligned}$
154- Grai nA- 01	300	$\begin{aligned} & 678 . \\ & 37 \end{aligned}$	$\begin{aligned} & 317 . \\ & 85 \end{aligned}$	$\begin{aligned} & \hline 124 . \\ & 06 \end{aligned}$	$\begin{aligned} & \hline 61.0 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 103 \\ & 2.39 \end{aligned}$	$\begin{aligned} & 147 . \\ & 54 \end{aligned}$	$\begin{aligned} & \hline 105 . \\ & 95 \end{aligned}$	$\begin{aligned} & 59.0 \\ & 1 \end{aligned}$	$\begin{aligned} & 853 . \\ & 36 \end{aligned}$	0	$\begin{aligned} & 367 \\ & 9.62 \end{aligned}$
$154-$ Grai	646. 1	$\begin{array}{\|l\|} \hline 208 . \\ 32 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 121 . \\ 15 \\ \hline \end{array}$	300	$\begin{array}{\|l\|} \hline 51.0 \\ 7 \\ \hline \end{array}$	$\begin{aligned} & \hline 232 . \\ & 79 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70.9 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 174 . \\ 74 \\ \hline \end{array}$	$\begin{aligned} & \hline 40.3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 211 . \\ 77 \\ \hline \end{array}$	0	$\begin{aligned} & \hline 205 \\ & 7.19 \\ & \hline \end{aligned}$

$\begin{aligned} & \text { nA- } \\ & 02 \end{aligned}$												
154- Grai nA- 03	$\begin{aligned} & 381 . \\ & 57 \end{aligned}$	300	$\begin{aligned} & 183 . \\ & 47 \end{aligned}$	$\begin{aligned} & \hline 189 . \\ & 81 \end{aligned}$	$\begin{aligned} & \hline 66.3 \\ & 2 \end{aligned}$	$\begin{aligned} & 277 . \\ & 36 \end{aligned}$	$\begin{aligned} & 328 . \\ & 8 \end{aligned}$	$\begin{aligned} & 571 . \\ & 43 \end{aligned}$	$\begin{array}{\|l\|} \hline 69.0 \\ 8 \end{array}$	$\begin{aligned} & 824 . \\ & 73 \end{aligned}$	0	$\begin{aligned} & 319 \\ & 2.57 \end{aligned}$
154- Grai nA- 04	300	300	$\begin{aligned} & 245 . \\ & 29 \end{aligned}$	$\begin{array}{\|l\|} \hline 105 \\ 2.81 \end{array}$	$\begin{aligned} & \hline 62.9 \\ & 6 \end{aligned}$	300	300	300	$\begin{array}{\|l\|} \hline 46.8 \\ 5 \end{array}$	300	0	$\begin{aligned} & \hline 320 \\ & 7.91 \end{aligned}$
154- Grai nA- 05	300	300	325	$\begin{array}{\|l} \hline 748 . \\ 16 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 78.2 \\ 9 \end{array}$	$\begin{array}{\|l\|} \hline 362 \\ 5.33 \end{array}$	$\begin{array}{\|l} \hline 119 . \\ 43 \end{array}$	$\begin{aligned} & 312 . \\ & 57 \end{aligned}$	55.4	179	0	$\begin{aligned} & \hline 604 \\ & 3.18 \end{aligned}$
$154-$ Grai nA- 06	$\begin{aligned} & 135 . \\ & 88 \end{aligned}$	$\begin{array}{\|l} \hline 813 . \\ 92 \end{array}$	$\begin{aligned} & 156 . \\ & 88 \end{aligned}$	$\begin{array}{\|l} \hline 102 . \\ 59 \end{array}$	$\begin{array}{\|l} \hline 77.1 \\ 7 \end{array}$	$\begin{array}{\|l\|} \hline 461 . \\ 83 \end{array}$	$\begin{aligned} & \hline 31.4 \\ & 7 \end{aligned}$	300	62.4	300	0	$\begin{aligned} & \hline 244 \\ & 2.14 \end{aligned}$
154- Grai nA- 07	300	300	$\begin{aligned} & 147 . \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 129 . \\ & 7 \end{aligned}$	$\begin{array}{\|l\|} \hline 110 . \\ 02 \end{array}$	300	$\begin{aligned} & 152 . \\ & 3 \end{aligned}$	300	$\begin{array}{\|l\|} \hline 30.0 \\ 9 \end{array}$	300	0	$\begin{aligned} & 206 \\ & 9.61 \end{aligned}$
154- Grai nA- 08	300	300	$\begin{aligned} & 211 . \\ & 09 \end{aligned}$	300	$\begin{aligned} & 157 . \\ & 23 \end{aligned}$	300	$\begin{aligned} & 146 . \\ & 14 \end{aligned}$	$\begin{aligned} & 204 . \\ & 39 \end{aligned}$	$\begin{aligned} & 61.4 \\ & 2 \end{aligned}$	300	0	$\begin{aligned} & 228 \\ & 0.27 \end{aligned}$
154- Grai nA- 09	$\begin{aligned} & \hline 246 . \\ & 19 \end{aligned}$	$\begin{aligned} & 255 . \\ & 48 \end{aligned}$	$\begin{aligned} & 410 . \\ & 09 \end{aligned}$	$\begin{array}{\|l} \hline 233 \\ 9.16 \end{array}$	$\begin{aligned} & \hline 66.8 \\ & 9 \end{aligned}$	300	$\begin{aligned} & 86.3 \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline 552 \\ 68.8 \\ 4 \end{array}$	$\begin{aligned} & \hline 62.1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 758 . \\ & 95 \end{aligned}$	0	$\begin{aligned} & 597 \\ & 94.0 \\ & 6 \end{aligned}$
$\begin{aligned} & 154- \\ & \text { Grai } \\ & \text { nA- } \\ & 10 \end{aligned}$	$\begin{aligned} & 143 . \\ & 4 \end{aligned}$	300	$\begin{aligned} & 131 . \\ & 67 \end{aligned}$	300	$\begin{array}{\|l\|} \hline 54.6 \\ 3 \end{array}$	$\begin{array}{\|l\|} \hline 391 . \\ 43 \end{array}$	$\begin{aligned} & 162 . \\ & 12 \end{aligned}$	$\begin{array}{\|l} \hline 498 . \\ 68 \end{array}$	$\begin{array}{\|l\|} \hline 52.0 \\ 4 \end{array}$	$\begin{aligned} & 255 . \\ & 27 \end{aligned}$	0	$\begin{aligned} & \hline 228 \\ & 9.24 \end{aligned}$
$\begin{aligned} & 895 \\ & \text { B- } \\ & \text { Grai } \\ & \text { nA- } \\ & 01 \end{aligned}$	300	300	$\begin{aligned} & 162 . \\ & 1 \end{aligned}$	$\begin{aligned} & 166 . \\ & 31 \end{aligned}$	$\begin{aligned} & 60.8 \\ & 4 \end{aligned}$	$\begin{aligned} & 195 . \\ & 54 \end{aligned}$	$\begin{array}{\|l\|} \hline 240 . \\ 03 \end{array}$	300	$\begin{array}{\|l} \hline 32.7 \\ 7 \end{array}$	$\begin{aligned} & 213 . \\ & 64 \end{aligned}$	0	$\begin{aligned} & 197 \\ & 1.23 \end{aligned}$
$\begin{aligned} & \hline 895 \\ & \text { B- } \\ & \text { Grai } \\ & \text { nA- } \\ & 02 \\ & \hline \end{aligned}$	300	$\begin{aligned} & 436 \\ & 8.24 \end{aligned}$	$\begin{aligned} & 275 . \\ & 41 \end{aligned}$	$\begin{aligned} & 195 . \\ & 66 \end{aligned}$	$\begin{array}{\|l\|} \hline 57.5 \\ 0 \end{array}$	$\begin{aligned} & 636 . \\ & 31 \end{aligned}$	$\begin{array}{\|l} \hline 387 . \\ 71 \end{array}$	$\begin{aligned} & \hline 802 . \\ & 59 \end{aligned}$	$\begin{array}{\|l\|} \hline 35.6 \\ 4 \end{array}$	$\begin{array}{\|l\|} \hline 116 \\ 6.83 \end{array}$	0	$\begin{aligned} & \hline 822 \\ & 5.98 \end{aligned}$
895 B-	300	$\begin{array}{\|l\|} \hline 750 \\ 3.85 \\ \hline \end{array}$	$\begin{aligned} & 161 . \\ & 2 \end{aligned}$	$\begin{array}{\|l} \hline 168 . \\ 91 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 63.0 \\ 8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 218 . \\ 02 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 682 . \\ 86 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 203 . \\ 77 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 55.7 \\ 6 \\ \hline \end{array}$	300	0	$\begin{aligned} & \hline 965 \\ & 7.45 \\ & \hline \end{aligned}$

$\begin{array}{\|l\|} \hline \text { Grai } \\ \text { nA- } \\ 03 \\ \hline \end{array}$												
$\begin{array}{\|l\|} \hline 895 \\ \text { B- } \\ \text { Grai } \\ \text { nA- } \\ 04 \\ \hline \end{array}$	$\begin{aligned} & 271 \\ & 9.14 \end{aligned}$	300	$\begin{array}{l\|} \hline 149 \\ 0.89 \end{array}$	$\begin{array}{\|l\|} \hline 80.9 \\ 6 \end{array}$	$\begin{aligned} & \hline 53.5 \\ & 6 \end{aligned}$	300	$\begin{aligned} & 736 . \\ & 17 \end{aligned}$	300	36.4	$\begin{array}{\|l\|} \hline 381 . \\ 26 \\ \hline \end{array}$	0	$\begin{aligned} & \hline 639 \\ & 8.38 \end{aligned}$
$\begin{array}{\|l\|} \hline 895 \\ \text { B- } \\ \text { Grai } \\ \text { nB- } \\ 01 \\ \hline \end{array}$	$\begin{aligned} & 144 . \\ & 11 \end{aligned}$	300	300	300	$\begin{aligned} & 82.8 \\ & 1 \end{aligned}$	300	300	300	$\begin{aligned} & 44.1 \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline 106 \\ 8.54 \\ \hline \end{array}$	0	$\begin{aligned} & 313 \\ & 9.61 \end{aligned}$
$\begin{array}{\|l} \hline 895 \\ \text { B- } \\ \text { Grai } \\ \text { nB- } \\ 02 \\ \hline \end{array}$	300	$\begin{array}{\|l\|} \hline 283 . \\ 04 \end{array}$	$\begin{aligned} & 197 . \\ & 04 \end{aligned}$	2.64	$\begin{array}{\|l} \hline 74.5 \\ 7 \end{array}$	$\begin{aligned} & \hline 167 \\ & 76.2 \\ & 8 \end{aligned}$	300	$\begin{aligned} & 734 . \\ & 95 \end{aligned}$	$\begin{aligned} & \hline 48.1 \\ & 7 \end{aligned}$	300	0	$\begin{aligned} & 190 \\ & 16.6 \\ & 9 \end{aligned}$
$\begin{array}{\|l\|} \hline 895 \\ \text { B- } \\ \text { Grai } \\ \text { nB- } \\ 03 \\ \hline \end{array}$	300	300	$\begin{aligned} & \hline 228 . \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 179 . \\ & 58 \end{aligned}$	$\begin{aligned} & 58.2 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 194 \\ & 7.1 \end{aligned}$	$\begin{aligned} & 276 . \\ & 28 \end{aligned}$	300	$\begin{aligned} & 36.7 \\ & 3 \end{aligned}$	$\begin{array}{\|l\|} \hline 147 \\ 0.93 \end{array}$	0	$\begin{aligned} & 509 \\ & 6.98 \end{aligned}$
$\begin{array}{\|l\|} \hline 895 \\ \text { B- } \\ \text { Grai } \\ \text { nB- } \\ 04 \\ \hline \end{array}$	300	$\begin{aligned} & 276 . \\ & 02 \end{aligned}$	$\begin{aligned} & 203 . \\ & 23 \\ & \hline \end{aligned}$	300	$\begin{array}{\|l\|} \hline 50.3 \\ 6 \end{array}$	300	300	$\begin{aligned} & 239 . \\ & 49 \end{aligned}$	$\begin{aligned} & 34.6 \\ & 1 \end{aligned}$	300	0	$\begin{aligned} & 230 \\ & 3.71 \end{aligned}$
$\begin{array}{\|l} \hline 895 \\ \text { B- } \\ \text { Grai } \\ \text { nB- } \\ 05 \\ \hline \end{array}$	$\begin{aligned} & 179 . \\ & 97 \end{aligned}$	300	$\begin{aligned} & \hline 79.4 \\ & 6 \end{aligned}$	300	49.4	300	$\begin{aligned} & \hline 95.5 \\ & 8 \end{aligned}$	$\begin{aligned} & 215 . \\ & 83 \end{aligned}$	$\begin{aligned} & 37.6 \\ & 9 \end{aligned}$	$\begin{aligned} & 447 . \\ & 94 \end{aligned}$	0	$\begin{aligned} & 200 \\ & 5.87 \end{aligned}$
$\begin{array}{\|l\|} \hline 895 \\ \text { B- } \\ \text { Grai } \\ \text { nB- } \\ 06 \\ \hline \end{array}$	$\begin{aligned} & 421 . \\ & 56 \end{aligned}$	300	$\begin{aligned} & 133 . \\ & 81 \end{aligned}$	300	$\begin{aligned} & \hline 67.1 \\ & 3 \end{aligned}$	$\begin{aligned} & 171 . \\ & 23 \end{aligned}$	$\begin{aligned} & 164 . \\ & 18 \end{aligned}$	$\begin{aligned} & 112 . \\ & 42 \end{aligned}$	$\begin{aligned} & 46.2 \\ & 2 \end{aligned}$	$\begin{aligned} & 688 . \\ & 35 \end{aligned}$	0	$\begin{aligned} & 240 \\ & 4.9 \end{aligned}$
$\begin{array}{\|l\|} \hline 895 \\ \text { B- } \\ \text { Grai } \\ \text { nB- } \\ 07 \\ \hline \end{array}$	300	300	$\begin{aligned} & 178 . \\ & 03 \end{aligned}$	$\begin{aligned} & \hline 472 . \\ & 6 \end{aligned}$	$\begin{aligned} & 79.9 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 116 \\ & 05.1 \\ & 5 \end{aligned}$	$\begin{aligned} & 93.8 \\ & 9 \end{aligned}$	$\begin{aligned} & 256 . \\ & 91 \end{aligned}$	$\begin{aligned} & 27.0 \\ & 8 \end{aligned}$	300	0	$\begin{aligned} & 136 \\ & 13.6 \end{aligned}$
164 BGrai	300	$\begin{aligned} & 135 \\ & 5.77 \end{aligned}$	$\begin{aligned} & \hline 104 . \\ & 28 \end{aligned}$	$\begin{aligned} & 189 . \\ & 05 \end{aligned}$	55.5	$\begin{aligned} & \hline 178 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 32.0 \\ & 1 \end{aligned}$	$\begin{aligned} & 350 . \\ & 55 \end{aligned}$	$\begin{aligned} & \hline 15.4 \\ & 4 \end{aligned}$	300	0	$\begin{aligned} & 449 \\ & 0.2 \end{aligned}$

$\begin{array}{\|l} \hline \mathrm{nC}- \\ 01 \end{array}$												
164 B- Grai nC- 02	300	300	300	0.3	300	$\begin{array}{\|l} \hline 209 . \\ 06 \end{array}$	$\begin{array}{\|l\|} \hline 102 \\ 4.1 \\ \hline \end{array}$	300	$\begin{aligned} & 152 . \\ & 75 \end{aligned}$	$\begin{aligned} & 182 . \\ & 15 \end{aligned}$	0	$\begin{aligned} & 306 \\ & 8.36 \end{aligned}$
164 B- Grai nC- 03	300	$\begin{aligned} & 406 \\ & 7.09 \end{aligned}$	$\begin{aligned} & 686 . \\ & 35 \end{aligned}$	$\begin{array}{\|l\|} \hline 90.9 \\ 3 \end{array}$	54.4	300	$\begin{aligned} & 481 . \\ & 47 \end{aligned}$	$\begin{array}{\|l\|} \hline 124 \\ 0.26 \end{array}$	2.46	300	0	$\begin{aligned} & \hline 752 \\ & 2.96 \end{aligned}$
$\begin{aligned} & 164 \\ & \text { B- } \\ & \text { Grai } \\ & \text { nC- } \\ & 04 \\ & \hline \end{aligned}$	$\begin{aligned} & 316 . \\ & 34 \end{aligned}$	300	$\begin{aligned} & \hline 749 \\ & 5.35 \end{aligned}$	$\begin{aligned} & 103 . \\ & 96 \end{aligned}$	$\begin{aligned} & \hline 65.8 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 878 . \\ & 05 \end{aligned}$	300	300	2.35	300	0	$\begin{aligned} & 100 \\ & 61.9 \\ & 4 \end{aligned}$
$\begin{aligned} & 164 \\ & \text { B- } \\ & \text { Grai } \\ & \text { nC- } \\ & 05 \\ & \hline \end{aligned}$	300	300	$\begin{aligned} & 166 . \\ & 31 \end{aligned}$	$\begin{aligned} & 94.6 \\ & 6 \end{aligned}$	$\begin{aligned} & 94.5 \\ & 3 \end{aligned}$	300	300	300	2.32	300	0	$\begin{aligned} & 215 \\ & 7.82 \end{aligned}$
164 B- Grai nC- 06	$\begin{array}{\|l\|} \hline 128 \\ 5.47 \end{array}$	300	$\begin{aligned} & \hline 789 \\ & 9.77 \end{aligned}$	$\begin{array}{\|l\|} \hline 82.8 \\ 2 \end{array}$	$\begin{aligned} & 53.2 \\ & 0 \end{aligned}$	300	$\begin{array}{\|l\|} \hline 27.7 \\ 4 \end{array}$	$\begin{aligned} & \hline 149 . \\ & 51 \end{aligned}$	$\begin{array}{\|l\|} \hline 43.7 \\ 3 \end{array}$	$\begin{aligned} & 153 . \\ & 77 \end{aligned}$	0	$\begin{aligned} & 102 \\ & 96.1 \end{aligned}$
$\begin{aligned} & 164 \\ & \text { B- } \\ & \text { Grai } \\ & \text { nC- } \\ & 07 \end{aligned}$	300	$\begin{array}{\|l} \hline 305 . \\ 38 \end{array}$	$\begin{aligned} & 131 . \\ & 27 \end{aligned}$	$\begin{aligned} & 206 . \\ & 12 \end{aligned}$	$\begin{array}{\|l\|} \hline 72.5 \\ 9 \end{array}$	300	25.7	$\begin{aligned} & \hline 340 . \\ & 72 \end{aligned}$	$\begin{aligned} & 42.9 \\ & 5 \end{aligned}$	$\begin{aligned} & 314 . \\ & 12 \end{aligned}$	0	$\begin{aligned} & \hline 203 \\ & 8.87 \end{aligned}$
164 B- Grai nC- 08	$\begin{array}{l\|} \hline 142 \\ 8.74 \end{array}$	$\begin{aligned} & 533 . \\ & 63 \end{aligned}$	$\begin{aligned} & 351 . \\ & 9 \end{aligned}$	$\begin{aligned} & 137 . \\ & 2 \end{aligned}$	60.7	300	24.9	300	$\begin{aligned} & 43.8 \\ & 9 \end{aligned}$	300	0	$\begin{aligned} & 348 \\ & 0.96 \end{aligned}$
$\begin{aligned} & 164 \\ & \text { B- } \\ & \text { Grai } \\ & \text { nC- } \\ & 09 \\ & \hline \end{aligned}$	300	300	$\begin{aligned} & 737 . \\ & 25 \end{aligned}$	$\begin{aligned} & 124 . \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 83.7 \\ & 1 \end{aligned}$	300	$\begin{array}{\|l\|} \hline 23.8 \\ 9 \end{array}$	$\begin{aligned} & \hline 120 . \\ & 89 \end{aligned}$	$\begin{aligned} & 42.2 \\ & 7 \end{aligned}$	300	0	$\begin{aligned} & \hline 233 \\ & 2.31 \end{aligned}$
164 B- Grai	300	300	$\begin{aligned} & 123 . \\ & 13 \end{aligned}$	$\begin{array}{\|l\|} \hline 80.5 \\ 1 \end{array}$	$\begin{aligned} & \hline 99.5 \\ & 6 \end{aligned}$	300	$\begin{array}{\|l} \hline 22.2 \\ 7 \end{array}$	300	$\begin{array}{\|l} \hline 40.2 \\ 8 \end{array}$	300	0	$\begin{aligned} & 186 \\ & 5.75 \end{aligned}$

$\begin{array}{\|l} \hline \mathrm{nC}- \\ 10 \end{array}$												
$\begin{aligned} & 162- \\ & \text { Grai } \\ & \text { nA- } \\ & 01 \end{aligned}$	$\begin{aligned} & \hline 101 \\ & 3.38 \end{aligned}$	300	$\begin{aligned} & 203 . \\ & 27 \end{aligned}$	$\begin{aligned} & 41.3 \\ & 9 \end{aligned}$	$\begin{aligned} & 50.0 \\ & 1 \end{aligned}$	$\begin{aligned} & 153 . \\ & 21 \end{aligned}$	$\begin{aligned} & 699 . \\ & 3 \end{aligned}$	$\begin{aligned} & 265 . \\ & 39 \end{aligned}$	57.6	$\begin{aligned} & 150 \\ & 7.73 \end{aligned}$	0	$\begin{aligned} & 429 \\ & 1.28 \end{aligned}$
$\begin{aligned} & 162- \\ & \text { Grai } \\ & \text { nA- } \\ & 02 \end{aligned}$	300	300	$\begin{aligned} & 97.4 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline 78.0 \\ & 7 \end{aligned}$	$\begin{aligned} & \hline 69.1 \\ & 4 \end{aligned}$	300	300	$\begin{aligned} & \hline 136 . \\ & 77 \end{aligned}$	$\begin{aligned} & \hline 61.6 \\ & 9 \end{aligned}$	300	0	$\begin{aligned} & 194 \\ & 3.13 \end{aligned}$
$\begin{aligned} & 162- \\ & \text { Grai } \\ & \text { nA- } \\ & 03 \end{aligned}$	$\begin{aligned} & \hline 269 . \\ & 73 \end{aligned}$	$\begin{aligned} & 207 . \\ & 63 \end{aligned}$	300	$\begin{aligned} & 80.5 \\ & 7 \end{aligned}$	$\begin{aligned} & 52.6 \\ & 4 \end{aligned}$	$\begin{array}{\|l\|} \hline 180 \\ 9.56 \end{array}$	300	300	$\begin{array}{\|l\|} \hline 47.0 \\ 5 \end{array}$	300	0	$\begin{aligned} & \hline 366 \\ & 7.18 \end{aligned}$
$\begin{aligned} & 162- \\ & \text { Grai } \\ & \text { nA- } \\ & 04 \end{aligned}$	$\begin{aligned} & \hline 224 . \\ & 87 \end{aligned}$	$\begin{aligned} & 296 . \\ & 25 \end{aligned}$	$\begin{aligned} & 920 . \\ & 32 \end{aligned}$	$\begin{array}{\|l\|} \hline 91.3 \\ 6 \end{array}$	$\begin{array}{\|l\|} \hline 60.8 \\ 1 \end{array}$	$\begin{aligned} & \hline 694 . \\ & 86 \end{aligned}$	$\begin{aligned} & \hline 286 . \\ & 03 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 189 . \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 64.4 \\ 3 \end{array}$	$\begin{aligned} & \hline 114 \\ & 9.66 \end{aligned}$	0	$\begin{aligned} & 397 \\ & 7.69 \end{aligned}$
162- Grai nA- 05	$\begin{array}{\|l} \hline 473 . \\ 57 \\ \hline \end{array}$	$\begin{aligned} & \hline 202 \\ & 9.62 \end{aligned}$	$\begin{aligned} & 636 . \\ & 34 \end{aligned}$	$\begin{array}{\|l} \hline 404 . \\ 19 \end{array}$	$\begin{array}{\|l} \hline 44.6 \\ 5 \end{array}$	300	300	$\begin{array}{\|l} \hline 119 . \\ 25 \end{array}$	$\begin{array}{\|l} \hline 49.2 \\ 6 \end{array}$	300	0	$\begin{aligned} & \hline 465 \\ & 6.88 \end{aligned}$
162- Grai nA- 06	300	$\begin{aligned} & 265 . \\ & 93 \end{aligned}$	$\begin{aligned} & 321 . \\ & 97 \end{aligned}$	$\begin{aligned} & 171 . \\ & 51 \end{aligned}$	59.6	300	300	300	$\begin{aligned} & 102 . \\ & 07 \end{aligned}$	$\begin{aligned} & 344 . \\ & 19 \end{aligned}$	0	$\begin{aligned} & 246 \\ & 5.27 \end{aligned}$
$\begin{aligned} & 162- \\ & \text { Grai } \\ & \text { nA- } \\ & 07 \\ & \hline \end{aligned}$	300	$\begin{aligned} & \hline 653 . \\ & 02 \end{aligned}$	$\begin{aligned} & 431 . \\ & 28 \end{aligned}$	$\begin{aligned} & \hline 22.1 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 56.1 \\ & 8 \end{aligned}$	300	$\begin{aligned} & \hline 27.8 \\ & 1 \end{aligned}$	300	38.6	$\begin{aligned} & \hline 365 \\ & 5.03 \end{aligned}$	0	$\begin{aligned} & \hline 578 \\ & 4.07 \end{aligned}$

D.5. Mass \% averages, minimums, maximums and rages for cobalt in pyrite

Sample	$\begin{aligned} & \text { Co(Mass } \\ & \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Co Mass \% } \\ & \text { avg } \\ & \hline \end{aligned}$	Co Mass \% Min	$\begin{aligned} & \text { Co Mass } \\ & \% \text { Max } \end{aligned}$	Range
168A Grain C	0.156	0.16	0.03	0.15	0.12
	0.063				
	0.035				
	0.056				
	0.059				
	0.066				
	0.037				
	0.053				
	0.044				
	0.043				

$\begin{aligned} & 3415 \mathrm{~A} \\ & \text { Grain } \mathrm{A} \end{aligned}$	0.084	0.07	0.03	0.17	0.13
	0.166				
	0.032				
	0.042				
	0.033				
	0.056				
	0.16				
	0.059				
	0.065				
	0.044				
$\begin{aligned} & \text { 153A Grain } \\ & \text { C } \end{aligned}$	24.798	3.3	0.04	24.8	24.8
	2.04				
	6.046				
	0.047				
	0.044				
	0.083				
	0.057				
	0.053				
	0.043				
	0.052				
$\begin{aligned} & \text { 886B Grain } \\ & \text { A } \end{aligned}$	1.208	0.4	0.05	2.2	2.1
	2.196				
	0.062				
	0.054				
	0.062				
	0.064				
	0.059				
	0.066				
	0.082				
	0.076				
NB036 Grain B	1.87	1.1	0.1	2.0	1.9
	2.012				
	1.283				
	1.032				
	0.091				
	0.515				
$\begin{aligned} & \text { NB036 } \\ & \text { Grain A } \end{aligned}$	0.053	0.2	0.05	0.5	0.4
	0.076				
	0.081				
	0.461				
	0.055				

	0.39				
	0.103				
	0.074				
490 Grain A	0.089	0.06	0.04	0.09	0.05
	0.071				
	0.062				
	0.04				
	0.037				
	0.049				
	0.044				
	0.071				
157 Grain A	0.184	0.18	0.04	0.6	0.5
	0.212				
	0.284				
	0.038				
	0.038				
	0.04				
	0.066				
	0.566				
154- GrainA-01	0.045	0.05	0.04	0.1	0.06
	0.066				
	0.039				
	0.058				
	0.049				
	0.043				
	0.095				
	0.044				
	0.043				
	0.052				
$\begin{aligned} & \text { 895B Grain } \\ & \text { A } \end{aligned}$	0.084	0.07	0.05	0.08	0.03
	0.08				
	0.049				
	0.077				
895B Grain B	0.061	0.08	0.05	0.1	0.05
	0.053				
	0.075				
	0.077				
	0.074				
	0.059				
	0.105				
	0.195	0.9	0.01	2.8	2.8

164B Grain C	0.012 2.539 2.74 2.8 0.063 0.065 0.064 0.065 0.07				
$162 \text { Grain A }$	0.047 0.044 0.056 0.042 0.054 0.026 0.069	0.048	0.026	0.069	0.043

D. 6 Mass \% averages, minimums, maximums and rages for nickel in pyrite

Sample	$\begin{array}{\|l} \hline \begin{array}{l} \text { Ni(Mass \% } \\) \end{array} \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{l} \text { Ni(Mass\% } \\) \end{array} \\ & \hline \end{aligned}$	Ni Mass \% avg	Min	Max	Range
168A Grain C	0.778	0.778	0.2	<LOD	0.8	0.8
	0.001	0.001				
	0.012	0.012				
	0.006	0.006				
	-0.005	<LOD				
	0.001	0.001				
	-0.01	<LOD				
	0.797	0.797				
	0.032	0.032				
	0.073	0.073				
3415A Grain	0.016	0.016	0.02	0.01	0.06	0.05
A	0.063	0.063				
	0.022	0.022				
	0.009	0.009				
	0.025	0.025				
	0.016	0.016				
	0.028	0.028				
	0.018	0.018				
	0.015	0.015				

	0.06	0.06				
153A Grain C	3.685	3.685	0.8	<LOD	3.7	3.7
	0.359	0.359				
	-0.512	<LOD				
	0.569	0.569				
	0.41	0.41				
	1.07	1.07				
	1.361	1.361				
	0.146	0.146				
	-0.017	<LOD				
	-0.021	<LOD				
886B Grain A	0.014	0.014	0.2	<LOD	0.9	0.9
	0.02	0.02				
	0.272	0.272				
	0.006	0.006				
	0.132	0.132				
	0.301	0.301				
	0.325	0.325				
	-0.015	<LOD				
	0.008	0.008				
	0.875	0.875				
NB036 Grain B	0.296	0.296	0.9	0.3	2.7	2.4
	0.266	0.266				
	0.549	0.549				
	0.638	0.638				
	2.702	2.702				
	1.117	1.117				
NB036 GrainA	0.027	0.027	0.03	<LOD	0.02	0.03
	0.007	0.007				
	0.01	0.01				
	0.028	0.028				
	-0.007	<LOD				
	-0.004	<LOD				
	-0.014	<LOD				
	0.005	0.005				
490 Grain A	0.03	0.03	0.01	<LOD	0.03	0.03
	0.009	0.009				
	0.021	0.021				
	0.016	0.016				
	-0.003	<LOD				
	0.007	0.007				

	0.002	0.002				
	0.025	0.025				
157 Grain A	0.033	0.033	0.02	<LOD	0.03	0.03
	0.025	0.025				
	0.001	0.001				
	-0.019	<LOD				
	0.02	0.02				
	0.017	0.017				
	0.001	0.001				
	0.019	0.019				
$\begin{aligned} & \text { 154-GrainA- } \\ & 01 \end{aligned}$	0.022	0.022	0.03	<LOD	0.1	0.1
	0.046	0.046				
	0.01	0.01				
	-0.001	<LOD				
	0.027	0.027				
	0.107	0.107				
	0.021	0.021				
	0.022	0.022				
	0.038	0.038				
	0.02	0.02				
895B Grain A	0.013	0.013	0.01	<LOD	0.01	0.01
	0.008	0.008				
	0.005	0.005				
	0.004	0.004				
895B Grain B	-0.008	<LOD	0.01	<LOD	0.03	0.03
	-0.017	<LOD				
	0.011	0.011				
	0	0				
	0.034	0.034				
	0.02	0.02				
	0.035	0.035				
164B Grain C	0.105	0.105	0.08	<LOD	0.16	0.16
	0.002	0.002				
	0.007	0.007				
	-0.011	<LOD				
	-0.007	<LOD				
	0.122	0.122				
	0.136	0.136				
	0.141	0.141				
	0.147	0.147				
	0.158	0.158				

162 Grain A	0.005	0.005	0.05	<LOD	0.01	0.01
	-0.002	<LOD				
	-0.002	<LOD				
	0.011	0.011				
	-0.007	<LOD				
	-0.002	<LOD				
	-0.122	<LOD				

Appendix E

E. 1 Samples, grains and traverses measured during LA ICP-MS analysis

Sample	Grain	Traverse
153	C \& B	C, B1, B2
S-3415A	A \& D	A1, A2, A3, D1, D2
152	A, G \& B	A, G1, G2, B1, B2
NB036	A \& B	B1, B2, A
173	A \& B	B1, B2, A1, A2
899 A	E \& F	E1, E2, F1, F2
157	A \& C	A1, A2, C1, C2
168A	C \& D	D1, D2, D3, C1, C2
895B	E \& F	F1, F2, E1, E2, E3
897A	A	A1, A2, A3
898A	A \& B	A1, A2, B1, B3
$164 B$	A \& B	A1, A2, A3, A4, B1, B2
$886 B$	E \& F	E, F
$171 B$	C \& B	C1, C2, B1, B2
154	A \& B	A1, A2, B1, B2, B3
900	E \& F	E1, E2, F1, F2
159	A \& B	A1, A2, A3, B1, B2

E2. Atomic counts of S, Au, Ag107 and Ag109. Gold inclusions are indicated by anomalously high peaks of gold with simultaneously high peaks of silver.

No anomalously high peaks, so no gold inclusions.

No anomalously high peaks, so no gold inclusions.

No anomalously high peaks, so no gold inclusions.

Inclusions found within S-3415 A1 with the high peaks of gold and silver at approximately 350 seconds and 500 seconds.

No anomalously high peaks, so no gold inclusions.

Inclusions found within S-3415 A3 with the high peaks of gold and silver at approximately 175 seconds and 300 seconds.

No anomalously high peaks, so no gold inclusions.

No anomalously high peaks, so no gold inclusions.

Inclusions found within 152 A with the high peaks of gold and silver at approximately 140 seconds and 200 seconds.

No anomalously high peaks, so no gold inclusions.

Inclusions found within 152 G 2 with the high peaks of gold and silver at approximately 250 seconds and 350 seconds.

Inclusions found within 152 B1 with the high peaks of gold and silver at approximately 175 seconds and 425 seconds.

Inclusion found within 152 B2 with the high peak of gold and silver at approximately 250 seconds.

No anomalously high peaks, so no gold inclusions.

No inclusion within NB036 B2 as it is just one anomalously high point that does not show a simultaneously high peak with silver.

No inclusion within NB036 A the high gold values are broad and suggest they are structural gold within pyrite grain.

No anomalously high peaks, so no gold inclusions.

Inclusion found within 157 A1 with the high peak of gold and silver at approximately 300 seconds.

Inclusions found within 157 A1 with the high peaks of gold and silver at approximately 210 seconds and 230 seconds.

No anomalously high peaks, so no gold inclusions.

No anomalously high peaks, so no gold inclusions.

No inclusion within 168A D1 as it is just one anomalously high point that does not show a simultaneously high peak with silver.

No anomalously high peaks, so no gold inclusions.

No anomalously high peaks, so no gold inclusions

No anomalously high peaks, so no gold inclusions

No anomalously high peaks, so no gold inclusions

Inclusion found within 898A B1 with the high peak of gold and silver at approximately 275 seconds.

No anomalously high peaks, so no gold inclusions

[^0]

No anomalously high peaks, so no gold inclusions

[^1]

No inclusion within 159 B1 as it is just one anomalously high point that does not show a simultaneously high peak with silver.

No anomalously high peaks, so no gold inclusions

E3. Trace element intensity peaks and segments analysed during Igor Pro and Iolite processing. Pink represents sulphur atomic counts, red represents gold atomic counts, blue represents nickel and green represents cobalt.

Appendix F: Element Concentrations

F. 1 Duration (s), total points, beam seconds for each sample, traverse and segment measured for LA ICP-MS for one component and normal type analysis.

Duration(s)	Sample ID, Traverse and Segment	Total points	Beam Seconds
18.58	153_C	49	35.4
11.773	153_B1_a	31	7.9
4.415	153_B1_b	11	23.89
16.74	153_B2	44	29
49.669	3415A_A1_a	131	73.7
53.9	3415A_A1_b	142	139.7
36.976	3415A_A2_a	97	23.2
10.854	3415A_A2_b	29	55.1
81.125	3415_A2_c	213	108.4
26.49	3415A_A3_a	70	14.4
29.801	3415A_A3_b	79	56.4
62.178	3415A_A3_c	163	124.4
66.961	3415A_D1	176	38
38.815	3415A_D2	102	27.7
20.603	3415A_D2_b	54	62.6
39.183	152_Ghost1_a	103	45
26.674	152_Ghost1_b	70	87
40.265	152_G1_a	106	63.4
116.29	152_G1_b	306	59.7
40	152_G2_a	105	40.6
58.013	152_G2_b	152	95.1
37.881	152_G2_c	100	20.7
85.563	152_B1_1	225	65.5
32.848	152_B2_a	86	17.9
38.675	152_B2_b	102	22.9
14.265	NB036_B1_a	36.1	1.4
9.8449	NB036_B1_b	53.4	1.1
12.658	NB036_B1_c	68.4	1.3
24.311	NIST610_B1_d	91	1.8
42.393	NIST610_B1_f	140.8	2.3
25.918	NIST610_B2_a	58.1	1.8
33.449	NIST610_B2_b	94.9	2.1

33.743	NB036_A	43.2	2.1
34.622	173_B1_a	41.2	2.1
17.681	173_B1_b	78.2	1.5
46.412	173_B2_a	28.4	2.4
31.856	173_B2_b	73.3	2
66.211	173_A2	63.2	2.9
4.2193	173_A1_a	2.27	0.76
6.6303	173_A1_b	18.23	0.93
15.872	173_A1_c	37.4	1.4
10.046	899A_E1_a	37	1.1
41.379	899A_E1_b	68.8	2.3
23.507	899A_E2_a	43.1	1.7
18.685	899A_E2_b	67.2	1.6
37.222	899A_E2_c	100.4	2.2
91.594	899A_F1	92.6	3.4
28.932	899A_F2_a	66.8	1.9
32.395	899A_F2_b	104.6	2
59.894	157_A1_a	28	2.5
27.895	157_A1_b	52.1	1.9
39.581	157_A2_a	15	1.7
22.101	157_A2_b	21.4	5.3
12.56	157_C1_a	39	1.3
11.586	157_C1_b	56.5	1.2
8.4385	157_C2_a	41.6	1.1
20.092	157_C2_b	65.7	1.6
5.3421	168A_D1_a	4.46	0.85
6.4753	168A_D1_b	13.77	0.93
15.217	168A_D1_c	37.7	1.4
8.0942	168A_D1_d	53.3	1
7.6085	168A_D1_e	63.7	1
13.598	168A_D2_a	10.3	1.3
8.7417	168A_D2_b	28.4	1.1
67.505	168A_D2_c	71.5	2.9
33.186	168A_D3_a	209.4	2.1
28.006	168A_D3_b	244.2	1.9
28.815	168A_C1_a	360	1.9
12.627	168A_C1_b	397	1.3
28.33	168A_C2_a	583.2	1.9
7.9323	168A_C2_b	612.5	1

91.442	895B_F1_a	46.2	3.4
38.653	895B_F2_a	189.1	2.2
32.899	895B_F2_b	231.6	2.1
89.816	895 B_E1_a	385.9	3.4
10.825	895B_E2_a	7.4	1.2
21.802	895B_E2_b	39.5	1.7
41.927	895B_E2_c	81.3	2.3
87.208	895B_E3	50.8	3.3
7.4706	897A_A1	29	28
11.587	897A_A2	16	15
6.5559	897A_A3	156.11	0.93
57.783	898A_A1	388	2.7
34.151	898A_A2_a	584.4	2.1
43.604	898A_A2_b	628.7	2.4
13.874	898A_B1_a	718.4	1.4
5.0312	898A_B1_b	737.75	0.82
4.2689	898A_B1_c	750.67	0.76
32.779	898A_B1_d	778.6	2
23.174	898A_B2_a	967.9	1.7
43.452	898A_B2_b	1020.9	2.4
19.558	166B_A1_a	52	16.2
9.8575	166B_A1_b	26	33.3
25.504	166B_A1_c	67	53.7
8.7622	166B_A1_d	23	75.7
17.368	166B_A1_e	46	96.4
28.008	166B_A2_a	74	15.9
13.456	166B_A2_b	35	40.1
40.212	166B_A2_c	106	70.7
22.688	166B_A2_d	60	106
54.92	166B_A3_a	144	35
11.892	166B_A3_b	31	72.1
31.763	166B_A3_c	83	97.9
43.029	166B_A4_a	113	31.7
47.566	166B_A4_b	126	80.5
9.701	166B_B1_a	26	11.3
5.9458	166B_B1_b	16	21.9
59.614	166B_B1_c	157	63.9
29.572	166B_B2_a	78	17.6
54.138	166B_B2_b	143	64.9

13.186	866B_F	34	7.6
17.599	866 B_E	46	10.8
21.633	171B_C1_a	57	18.7
8.2628	171B_C1_b	22	36.4
27.342	171B_C1_c	71	64.3
18.929	171B_C1_d	50	91.5
8.589	171B_C2_a	23	10.3
7.3442	171B_C2_b	19	27
13.444	171B_C2_c	35	46.4
12.946	171B_C2_d	34	68.2
7.8421	171B_C2_e	21	90.1
12.946	171B_B1_a	34	183.4
34.356	171B_B1_b	91	210.6
12.074	171B_B2_a	31	17.1
39.584	171B_B2_b	104	46.1
13.306	154_A1_a	35	24.7
10.946	154_A1_b	29	45.6
3.6827	154_A2_a	10	409.56
17.491	154_A2_b	46	429.7
7.5116	154_A2_c	20	449.8
7.6189	154_B1_a	20	573.8
3.9704	154_B1_b	11	581.63
14.487	154_B1_c	38	593.2
6.5458	154_B1_d	17	606.71
4.7216	154_B2_a	12	16.97
8.692	154_B2_b	23	25.1
4.7216	154_B2_c	12	39.39
4.3997	154_B3_a	11	5.86
6.8678	154_B3_b	18	13.27
6.2239	154_B3_c	17	29.04
9.0139	154_B3_d	24	41.8
54.234	154_B4_a	142	36.9
12.62	154_B4_b	33	81.6
18.929	154_B4_c	50	100.8
26.892	154_B5_a	70	37
12.77	154_B5_b	33	65.3
9.6149	154_B5_c	26	80.3
2.6501	900_E1_a	7	5.89
6.8591	900_E1_b	18	12.92

17.771	900_E1_c	47	28.3
7.1709	900_E1_d	18	44.09
13.562	900_E1_e	35	57.6
3.2737	900_E1_f	9	71.26
3.7413	900_E1_g	10	76.77
17.46	900_E1_h	46	90.1
36.01	900_E2_a	95	22
18.707	900_E2_b	50	52.2
4.6767	900_E2_c	12	65.48
15.589	900_E2_d	41	82.8
7.4827	900_E2_e	20	97.8
74.671	900_F1_a	197	37
10.289	900_F1_b	27	87.2
24.63	900_F2_a	64	192.5
19.798	900_F2_b	52	226.7
12.003	900_F2_c	31	245.5
51.911	159_A1	137	27.8
59.238	159_A2	156	198.1
67.344	159_A3	178	36.4
45.675	159_B1	120	24
36.946	159_B2	98	22.1

F. 2 Concentrations of Au and LOD for each of the three standards, NIST610, Po 725 and Mass 1

Sample ID	Au NIST610	Au NIST610 LOD	Au Po725	Au Po725 LOD	Au Mass 1	Au Mass LOD
153_C	0.106	0.049	0.078	0.036	0.067	0.031
153_B1_a	0.125	0.078	0.092	0.057	0.079	0.049
153_B1_b	Below LOD	0.11	Below LOD	0.077	Below LOD	0.066
153_B2	0.064	0.055	0.047	0.04	0.041	0.035
3415A_A1_a	0.056	0.039	0.042	0.029	0.036	0.025
3415A_A1_b	0.28	0.044	0.21	0.032	0.18	0.028
3415A_A2_a	0.094	0.038	0.07	0.028	0.06	0.024
3415A_A2_b	Below LOD	0.053	Below LOD	0.039	Below LOD	0.034
3415_A2_c	Below LOD	0.031	Below LOD	0.023	Below LOD	0.02
3415A_A3_a	0.049	0.046	0.037	0.034	0.032	0.029
3415A_A3_b	0.112	0.048	0.084	0.036	0.072	0.031

3415A_A3_c	0.117	0.029	0.088	0.021	0.076	0.019
3415A_D1	Below LOD	0.029	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.022	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.019
3415A_D2	Below LOD	0.044	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.033	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.029
3415A_D2_b	Below LOD	0.05	Below LOD	0.038	Below LOD	0.033
152_A_a	0.32	0.048	0.241	0.036	0.209	0.032
152_A_b	0.225	0.063	0.171	0.047	0.148	0.041
152_G1_a	0.19	0.11	0.143	0.086	0.124	0.075
152_G1_b	Below LOD	0.076	Below LOD	0.057	Below LOD	0.05
152_G2_a	0.104	0.072	0.079	0.055	0.069	0.047
152_G2_b	0.64	0.06	0.49	0.045	0.43	0.039
152_G2_c	Below LOD	0.057	Below LOD	0.044	Below LOD	0.038
152_B1_1	0.138	0.053	0.106	0.041	0.092	0.035
152_B2_a	0.075	0.07	0.058	0.054	0.051	0.047
152_B2_b	0.47	0.057	0.36	0.044	0.31	0.038
NB036_B1_a	Below LOD	0.038	Below LOD	0.028	Below LOD	0.024
NB036_B1_b	Below LOD	0.043	Below LOD	0.031	Below LOD	0.027
NB036_B1_c	Below LOD	0.039	Below LOD	0.028	Below LOD	0.025
NB036_B1_d	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.032	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.023	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.02
NB036_B1_f	Below LOD	0.026	Below LOD	0.019	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.016
NB036_B2_a	Below LOD	0.029	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.021	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.018
NB036_B2_b	Below LOD	0.04	Below LOD	0.028	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.025
NB036_A	0.63	0.03	0.49	0.021	0.46	0.019
173_B1_a	Below LOD	0.03	Below LOD	0.021	Below LOD	0.019
173_B1_b	Below LOD	0.037	Below LOD	0.026	Below LOD	0.023
173_B2_a	Below LOD	0.028	Below LOD	0.019	Below LOD	0.018
173_B2_b	Below LOD	0.036	Below LOD	0.025	Below LOD	0.023
173_A2	Below LOD	0.021	Below LOD	0.014	Below LOD	0.013

173_A1_a	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.073	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.049	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.046
173_A1_b	Below LOD	0.058	Below LOD	0.039	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.037
173_A1_c	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.042	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.028	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.026
899A_E1_a	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.045	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.03	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.029
899A_E1_b	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.03	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.02	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.019
899A_E2_a	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.033	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.022	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.021
899A_E2_b	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.036	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.024	Below LOD	0.023
899A_E2_c	Below LOD	0.026	Below LOD	0.017	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.017
899A_F1	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.021	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.014	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.014
899A_F2_a	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.029	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.019	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.019
899A_F2_b	Below LOD	0.026	Below LOD	0.016	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.017
157_A1_a	0.262	0.12	0.186	0.075	0.196	0.079
157_A1_b	0.33	0.13	0.24	0.083	0.25	0.087
157_A2_a	0.34	0.14	0.24	0.088	0.25	0.092
157_A2_b	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.14	$\begin{array}{\|l} \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.092	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.097
157_C1_a	0.11	0.039	0.078	0.026	0.083	0.027
157_C1_b	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \end{array}$	0.037	Below LOD	0.024	Below LOD	0.025
157_C2_a	0.16	0.072	0.113	0.048	0.119	0.051
157_C2_b	0.062	0.039	0.044	0.026	0.047	0.027
168A_D1_a	0.07	0.066	0.078	0.074	0.07	0.066
168A_D1_b	Below LOD	0.057	Below LOD	0.065	Below LOD	0.057
168A_D1_c	Below LOD	0.043	Below LOD	0.049	Below LOD	0.043
168A_D1_d	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.061	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.069	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.061
168A_D1_e	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.042	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.048	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.042
168A_D2_a	0.054	0.052	0.062	0.059	0.054	0.052
168A_D2_b	Below LOD	0.049	Below LOD	0.056	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.049

168A_D2_c	$\begin{aligned} & \hline \text { Below } \\ & \text { I OD } \end{aligned}$	0.029	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.034	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.029
168A_D3_a	Below LOD	0.028	Below LOD	0.033	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.028
168A_D3_b	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.03	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.035	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.03
168A_C1_a	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \end{array}$	0.033	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.04	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.033
168A_C1_b	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.037	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.045	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.037
168A_C2_a	Below LOD	0.039	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.048	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.039
168A_C2_b	Below LOD	0.063	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.077	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.063
895B_F1_a	0.027	0.022	0.032	0.027	0.027	0.022
895B_F2_a	Below LOD	0.024	Below LOD	0.03	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.024
895B_F2_b	Below LOD	0.023	Below LOD	0.029	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.023
895B_E1_a	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.019	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.024	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.019
895B_E2_a	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.039	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.051	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.039
895B_E2_b	Below LOD	0.028	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.037	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.028
895B_E2_c	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.024	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.031	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.024
895B_E3	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.021	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.028	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.021
897A_A1	0.069	0.06	0.087	0.082	0.069	0.06
897A_A2	Below LOD	0.061	Below LOD	0.084	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.061
897A_A3	Below LOD	0.11	Below LOD	0.16	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.11
898A_A1	0.031	0.024	0.041	0.034	0.031	0.024
898A_A2_a	0.031	0.029	Below LOD	0.042	0.031	0.029
898A_A2_b	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \end{array}$	0.023	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.034	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.023
898A_B1_a	0.049	0.032	0.067	0.047	0.049	0.032
898A_B1_b	0.195	0.042	0.266	0.062	0.195	0.042
898A_B1_c	0.111	0.053	0.152	0.078	0.111	0.053
898A_B1_d	0.037	0.025	0.051	0.036	0.037	0.025
898A_B2_a	0.238	0.025	0.33	0.038	0.238	0.025
898A_B2_b	0.033	0.019	0.046	0.029	0.033	0.019

164B_A1_a	Below LOD	0.26	Below LOD	0.3	Below LOD	0.26
164B_A1_b	Below LOD	0.31	Below LOD	0.35	Below LOD	0.31
164B_A1_c	Below LOD	0.22	Below LOD	0.25	Below LOD	0.22
164B_A1_d	Below LOD	0.28	Below LOD	0.32	Below LOD	0.28
164B_A1_e	Below LOD	0.23	Below LOD	0.25	Below LOD	0.23
164B_A2_a	Below LOD	0.18	Below LOD	0.21	Below LOD	0.18
164B_A2_b	Below LOD	0.23	Below LOD	0.26	Below LOD	0.23
164B_A2_d	Below LOD	Below LOD	0.21	Below LOD	0.24	Below LOD
LOD						
LOD						

171B_C1_c	Below LOD	0.048	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.053	Below LOD	0.048
171B_C1_d	Below LOD	0.055	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.061	Below LOD	0.055
171B_C2_a	Below LOD	0.055	Below LOD	0.06	Below LOD	0.055
171B_C2_b	Below LOD	0.057	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.063	Below LOD	0.057
171B_C2_c	Below LOD	0.05	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.055	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.05
171B_C2_d	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.039	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.042	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.039
171B_C2_e	Below LOD	0.044	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.048	Below LOD	0.044
171B_B1_a	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.027	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.03	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.027
171B_B1_b	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.02	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.022	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.02
171B_B2_a	Below LOD	0.031	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.034	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.031
171B_B2_b	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.022	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.024	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.022
154_A1_a	0.036	0.028	0.037	0.031	0.036	0.028
154_A1_b	0.047	0.032	0.048	0.035	0.047	0.032
154_A2_a	Below LOD	0.091	Below LOD	0.1	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.091
154_A2_b	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.051	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.056	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.051
154_A2_c	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.076	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.084	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.076
154_B1_a	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.098	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.11	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.098
154_B1_b	0.11	0.093	0.11	0.1	0.11	0.093
154_B1_c	Below LOD	0.076	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.084	Below LOD	0.076
154_B1_d	Below LOD	0.092	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.1	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.092
154_B2_a	Below LOD	0.11	$\begin{array}{\|l\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.12	Below LOD	0.11
154_B2_b	Below LOD	0.094	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.1	Below LOD	0.094
154_B2_c	Below LOD	0.14	$\begin{array}{\|l\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.16	Below LOD	0.14
154_B3_a	0.124	0.072	0.133	0.08	0.124	0.072

154_B3_b	Below LOD	0.064	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.071	Below LOD	0.064
154_B3_c	Below LOD	0.063	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.07	Below LOD	0.063
154_B3_d	Below LOD	0.046	Below LOD	0.051	Below LOD	0.046
154_B4_a	$\begin{array}{\|l} \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.057	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.063	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.057
154_B4_b	Below LOD	0.082	Below LOD	0.091	Below LOD	0.082
154_B4_c	Below LOD	0.061	Below LOD	0.068	Below LOD	0.061
154_B5_a	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.063	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.07	Below LOD	0.063
154_B5_b	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.077	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.086	Below LOD	0.077
154_B5_c	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.073	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.082	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.073
900_E1_a	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.25	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.29	Below LOD	0.25
900_E1_b	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.15	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.18	Below LOD	0.15
900_E1_c	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.12	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.14	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.12
900_E1_d	Below LOD	0.16	Below LOD	0.19	Below LOD	0.16
900_E1_e	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.12	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.14	Below LOD	0.12
900_E1_f	Below LOD	0.14	Below LOD	0.16	Below LOD	0.14
900_E1_g	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.16	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.19	Below LOD	0.16
900_E1_h	Below LOD	0.092	Below LOD	0.11	Below LOD	0.092
900_E2_a	Below LOD	0.088	Below LOD	0.11	Below LOD	0.088
900_E2_b	Below LOD	0.11	Below LOD	0.13	Below LOD	0.11
900_E2_c	Below LOD	0.14	Below LOD	0.16	Below LOD	0.14
900_E2_d	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.088	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.11	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.088
900_E2_e	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.13	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.16	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.13
900_F1_a	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.07	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.088	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.07

900_F1_b	Below LOD	0.16	Below LOD	0.2	Below LOD	0.16
900_F2_a	Below LOD	0.075	Below LOD	0.096	Below LOD	0.075
$900 _$F2_b	Below LOD	0.069	Below LOD	0.089	Below LOD	0.069
900_F2_c	Below LOD	0.073	Below LOD	0.094	Below LOD	0.073
$159 _$A1	Below LOD	0.14	Below LOD	0.18	Below LOD	0.14
$159 _$A2	Below LOD	0.12	Below LOD	0.16	Below LOD	0.12
$159 _$A3	Below LOD	0.12	Below LOD	0.16	Below LOD	0.12
$159 _B 1$	Below LOD	0.086	Below LOD	0.12	Below LOD	0.086
$159 _B 2$	Below LOD	0.11	Below LOD	0.15	Below LOD	0.11

F. 3 Concentrations of $\mathrm{Co}, \mathrm{Ni}, \mathrm{Se} 77$, and Se 78 in ppm in the samples under the standard NIST610

Sample ID	Co ppm	Co5 ppm LOD	Ni ppm	Ni ppm LOD	Se77 ppm	Se77 ppm LOD	Se77 ppm LOD	Se78 ppm LOD
$153 _$C	$8.00 \mathrm{E}+0$ 3	0.016	4390	0.19	26.9	0.51	35.9	13
$153 _B 1 _\mathrm{a}$	41	0.02	27	0.32	5.7	0.76	Belo w LOD	17
153_B1_b	41	0.027	15.5	0.43	1.3	1	Belo w LOD	23
153_B2	11	0.024	30	0.21	14.5	0.54	18.5	11
3415A_A1_ a	302	0.011	480	0.16	14	0.48	24.8	10
3415A_A1_ b	566	0.031	186	0.23	14.87	0.56	29.4	11
3415A_A2_ a	361	0.027	691	0.2	4.44	0.49	Belo w LOD	9.5
3415A_A2_ b	122	0.037	256	0.28	11.3	0.68	21.3	13
3415_A2_c	309	0.016	201	0.12	14.42	0.45	21.3	8.1

3415A_A3_ a	55	0.024	177	0.19	14.6	0.66	20.3	12
3415A_A3_ b	125	0.025	419	0.19	10.5	0.69	14.4	13
3415A_A3_ c	639	0.018	514	0.14	14.69	0.38	21.3	8.4
3415A_D1	110	0.018	483	0.14	5.73	0.38	14.2	8.4
3415A_D2	96	0.016	375	0.17	3.94	0.44	Belo w LOD	11
3415A_D2_ b	43	0.018	622	0.2	19.3	0.5	28.6	12
152_A_a	211	0.02	765	0.19	23.4	0.58	24.8	13
152_A_b	91	0.025	335	0.25	24	0.75	41.7	16
152_G1_a	112.9	0.039	505	0.51	27.5	1.5	38	32
152_G1_b	212	0.026	496	0.34	21.4	1	40.8	21
152_G2_a	131.2	0.048	567	0.39	24.3	1.2	25.2	23
152_G2_b	312	0.04	519	0.32	18.4	0.96	27	19
152_G2_c	41.8	0.028	300	0.29	20.2	0.78	17.6	16
152_B1_1	92	0.026	285	0.27	28.1	0.72	30.1	15
152_B2_a	81	0.032	84	0.33	27.3	0.83	41.8	20
152_B2_b	205	0.026	432	0.27	26.6	0.67	45.5	16
NB036_B1_ a	5130	0.015	134	0.17	22.4	0.46	34.1	14
NB036_B1_ b	450	0.016	38	0.2	38.4	0.52	50	16
NB036_B1_ c	546	0.015	11.5	0.18	40.8	0.47	58	15
NB036_B1_ d	660	0.012	3.6	0.14	35.6	0.38	53.5	12
NB036_B1_ f	1990	0.013	28.8	0.11	50	0.32	80.3	10
NB036_B2_ a	840	0.015	14.6	0.13	31.4	0.35	48.9	11
NB036_B2_ b	1720	0.016	25.8	0.12	29.4	0.59	46.5	13
NB036_A	14150	0.012	4830	0.092	32.9	0.44	51.6	9.6
173_B1_a	2220	0.015	301	0.15	9.3	0.39	13	11
173_B1_b	74	0.018	461	0.18	7.7	0.48	23.1	14
173_B2_a 173_B2_b	3780	0.012	277	0.13	8.89	0.5	Belo w	14
173_A2	910	0.014	271	0.11	7.71	0.37	12.6	10
		478	0.17	12.8	0.64	25.4	18	

173_A1_a	62.9	0.03	234	0.33	6.6	0.81	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	29
173_A1_b	103	0.024	226	0.26	5.8	0.64	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	23
173_A1_c	707	0.017	215	0.19	6.45	0.46	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	16
899A_E1_a	282	0.013	915	0.19	7.1	0.58	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	20
899A_E1_b	237	0.009	1178	0.13	13	0.39	18	14
899A_E2_a	88	0.022	880	0.14	8.64	0.37	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	12
899A_E2_b	259	0.024	1180	0.16	9.2	0.4	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	13
899A_E2_c	82	0.015	1130	0.18	9.8	0.44	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	11
899A_F1	229	0.012	1518	0.14	8.56	0.36	12.8	9.1
899A_F2_a	168	0.016	1482	0.12	8.1	0.51	17.2	12
899A_F2_b	280	0.016	1120	0.14	9	0.37	13.8	12
157_A1_a	196	0.071	181	0.65	9	1.7	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	54
157_A1_b	1580	0.089	264	0.63	16.4	2.2	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	67
157_A2_a	1390	0.095	291	0.67	19.8	2.3	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	69
157_A2_b	1040	0.099	310	0.71	9.2	2.4	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	72
157_C1_a	189	0.028	318	0.2	16.9	0.63	20	15
157_C1_b	5.3	0.026	24.4	0.19	7	0.59	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	14
157_C2_a	66	0.032	110	0.46	12.6	1.1	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	26
157_C2_b	105	0.017	144	0.25	20.6	0.56	33.9	14

168A_D1_a	0.46	0.027	960	0.31	10.6	0.89	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	18
168A_D1_b	0.05	0.024	2760	0.27	10.3	0.78	22	16
168A_D1_c	2.79	0.018	820	0.2	32.2	0.58	54	12
168A_D1_d	0.25	0.025	53	0.29	29.8	0.82	53	17
168A_D1_e	0.19	0.015	1390	0.21	15.3	0.86	22.4	17
168A_D2_a	8	0.018	2230	0.26	20.1	1.1	41	21
168A_D2_b	0.067	0.017	270	0.25	43.9	1	69	20
168A_D2_c	0.068	0.011	112	0.15	28.5	0.61	46.7	12
168A_D3_a	0.336	$\begin{aligned} & 0.008 \\ & 6 \end{aligned}$	95	0.12	20.9	0.36	33.2	12
168A_D3_b	4	$\begin{aligned} & 0.009 \\ & 7 \end{aligned}$	950	0.14	29.2	0.38	43.9	11
168A_C1_a	1.69	0.011	113	0.16	39.1	0.42	65.1	13
168A_C1_b	7.4	0.012	180	0.18	50.4	0.47	82.7	14
168A_C2_a	2.8	0.016	127	0.15	42	0.57	70.2	15
168A_C2_b	1.25	0.026	278	0.24	23.1	0.92	48	23
895B_F1_a	512	$\begin{aligned} & 0.009 \\ & 7 \end{aligned}$	209.6	0.13	6.05	0.4	$\begin{array}{\|l} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	10
895B_F2_a	973	$\begin{aligned} & 0.006 \\ & 2 \end{aligned}$	334	0.15	5.53	0.38	14.7	10
895B_F2_b	505	0.012	181	0.15	5.19	0.44	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	10
895B_E1_a	507	0.01	234.6	0.13	5.69	0.36	9.5	8.5
895B_E2_a	451	0.023	230	0.33	6.1	0.71	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	15
895B_E2_b	650	0.017	87	0.24	5.58	0.52	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	11
895B_E2_c	451	$\begin{aligned} & 0.009 \\ & 7 \\ & \hline \end{aligned}$	158	0.11	5.69	0.34	11.6	9.5
895B_E3	431	$\begin{aligned} & 0.008 \\ & 5 \end{aligned}$	199.1	0.093	5.37	0.3	10.5	8.3
897A_A1	$\begin{array}{\|l} \hline 3.76 \mathrm{E}+0 \\ 4 \end{array}$	0.022	870	0.34	66	1	95	26
897A_A2	3440	0.031	$\begin{aligned} & 5.40 \mathrm{E}+0 \\ & 3 \end{aligned}$	0.46	52.2	1.4	64	35
897A_A3	$\begin{aligned} & 5.40 \mathrm{E}+0 \\ & 3 \\ & \hline \end{aligned}$	0.053	$\begin{array}{\|l\|} \hline 7.70 \mathrm{E}+0 \\ 3 \\ \hline \end{array}$	0.64	102	2.3	161	48
898A_A1	225	0.01	700	0.15	27.9	0.54	36.4	12

898A_A2_a	184	$\begin{aligned} & \hline 0.009 \\ & 7 \\ & \hline \end{aligned}$	514	0.14	27.1	0.41	42.5	11
898A_A2_b	142	0.011	545	0.13	28.9	0.49	44.3	12
898A_B1_a	405	0.015	590	0.18	31.2	0.68	49.3	16
898A_B1_b	213	0.02	138	0.24	35.6	0.9	56	21
898A_B1_c	96	0.024	770	0.3	30.2	1.1	48	26
898A_B1_d	107	0.011	353	0.14	29.7	0.52	48.2	12
898A_B2_a	188	0.013	646	0.16	30.2	0.49	47.7	14
898A_B2_b	67.8	$\begin{aligned} & 0.007 \\ & 9 \end{aligned}$	481	0.12	32.2	0.49	48.8	11
164B_A1_a	334	0.14	940	1.7	34.7	4.1	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	120
164B _A1_b	442	0.17	1392	2	38	4.9	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	150
164B _A1_c	418	0.12	1292	1.4	34.5	3.5	Belo w LOD	100
164B _A1_d	425	0.18	1340	2.5	33.2	5.4	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	150
164B _A1_e	421	0.15	1309	2	31.1	4.3	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	120
164B _A2_a	443	0.12	1344	1.7	33.7	3.5	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	97
164B _A2_b	451	0.15	1220	2.1	33.3	4.4	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	120
164B _A2_c	325	0.037	780	1.6	32.7	3.4	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	97
164B _A2_d	435	0.039	1260	1.8	36.5	3.7	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	100
164B _A3_a	554	0.027	1374	1.2	32.6	2.5	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	71
164B _A3_b	449	0.17	1030	1.5	25.9	3.9	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	97

164B _A3_c	543	0.12	1367	1	30.4	2.7	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	67
164B _A4_a	442	0.13	1015	1.1	30.1	2.9	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	73
164B _A4_b	560	0.058	1430	1.2	32.9	3.1	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	82
164B _B1_a	685	0.22	868	4.4	35.8	11	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	300
164B _B1_b	692	0.29	903	5.9	49	15	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	410
164B _B1_c	747	0.25	1066	3.1	43.7	10	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	220
164B _B2_a	709	0.25	975	3.1	44	10	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	220
164B _B2_b	735	0.27	1042	3.4	42.5	11	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	240
886B_F	440	0.025	272	0.2	12.6	0.46	17.3	15
886B_E	57	0.014	92	0.22	5.76	0.41	$\begin{aligned} & \text { Belo } \\ & \mathrm{w} \\ & \text { LOD } \end{aligned}$	13
171B_C1_a	1072	0.033	145.6	0.46	5.6	1	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	29
171B_C1_b	715	0.049	212	0.69	8.8	1.5	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	43
171B_C1_c	422	0.032	210	0.44	8.6	0.98	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	28
171B_C1_d	491	0.027	421	0.52	11	0.97	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	30
171B_C2_a	2740	0.027	811	0.51	18.6	0.96	32	30
171B_C2_b	2310	0.028	897	0.53	20.5	1	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	32

171B_C2_c	3220	0.025	889	0.47	22.5	0.88	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	28
171B_C2_d	627	0.025	292	0.25	7.2	0.67	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	19
171B_C2_e	540	0.029	266	0.28	9.7	0.75	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	21
171B_B1_a	99	0.018	1120	0.18	13.5	0.47	15.8	13
171B_B1_b	207	0.013	287	0.13	11.03	0.35	17.9	10
171B_B2_a	27.2	0.011	60	0.19	19.5	0.51	25.1	15
171B_B2_b	293	0.008	48.2	0.14	18.4	0.36	31.8	11
154_A1_a	19.4	0.019	97	0.27	14.9	0.66	25.4	15
154_A1_b	67	0.021	148	0.31	13.7	0.74	18	18
154_A2_a	112	0.039	205	0.53	22.8	1.1	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	40
154_A2_b	0.273	0.021	99	0.29	12.1	0.59	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	22
154_A2_c	1.98	0.032	107	0.44	13.4	0.88	39	33
154_B1_a	35.4	0.07	211	0.78	4.2	1.7	$\begin{aligned} & \hline \text { Belo } \\ & \mathrm{w} \\ & \text { LOD } \end{aligned}$	56
154_B1_b	16.9	0.066	182	0.75	5.8	1.6	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	54
154_B1_c	2.4	0.054	903	0.61	24	1.3	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	44
154_B1_d	12	0.066	746	0.74	21.9	1.6	63	53
154_B2_a	277	0.062	1020	0.6	7.2	1.8	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	49
154_B2_b	560	0.053	754	0.52	17.1	1.6	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	42
154_B2_c	67	0.08	201	0.78	9	2.3	$\begin{array}{\|l} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	64
154_B3_a	30.6	0.034	429	0.71	6.4	1.6	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	52

154_B3_b	110	0.029	381	0.63	5.7	1.4	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	46
154_B3_c	33	0.029	105	0.62	5.8	1.4	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \end{aligned}$	46
154_B3_d	98	0.021	178	0.45	4	1	$\begin{array}{\|l} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	33
154_B4_a	74	0.036	168	0.29	6.32	0.77	$\begin{array}{\|l\|} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	22
154_B4_b	18.1	0.053	293	0.42	15.9	1.1	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	32
154_B4_c	86	0.039	356	0.32	7.3	0.84	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	24
154_B5_a	29.3	0.04	132.8	0.32	8.4	0.85	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	24
154_B5_b	59	0.049	107	0.4	4.3	1.1	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	30
154_B5_c	76	0.047	165	0.38	6.9	1	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	28
900_E1_a	207	0.13	145	1.5	47	4.1	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	130
900_E1_b	79	0.08	98	0.94	10	2.5	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	78
900_E1_c	57.5	0.062	67.6	0.73	6.6	2	$\begin{array}{\|l} \hline \text { Belo } \\ \text { w } \\ \text { LOD } \\ \hline \end{array}$	60
900_E1_d	34.5	0.087	71.6	1	9.2	2.7	$\begin{aligned} & \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	84
900_E1_e	48	0.066	72	0.77	3.6	2.1	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	64
900_E1_f	44	0.077	47.7	1.3	3.3	2.7	$\begin{aligned} & \hline \text { Belo } \\ & \text { w } \\ & \text { LOD } \\ & \hline \end{aligned}$	94

900_E1_g	31.4	0.09	28.2	1.6	7	3.2	Belo w LOD	110
900_E1_h	34.7	0.052	42.8	0.9	5.7	1.8	Belo w LOD	63
900_E2_a	63	0.051	57.7	0.88	7.6	1.8	Belo w LOD	61
900_E2_b	46.6	0.062	65	1.1	5	2.2	Belo w	75
900_E2_c	76	0.12	125	1.6	7.3	3.5	Belo w LOD	110
900_E2_d	74.8	0.078	76	1	6.2	2.3	Belo w LOD	71
900_E2_e	254	0.12	293	1.6	13	3.4	Belo w	110
LOD								

$159 _$B2	25.1	0.081	5.87	1.1	32.3	2.2	Belo w LOD	69

F. 4 Concentrations of $\mathrm{Ag} \mathrm{107}$,Ag 109 , As , and Sb in ppm in the samples under the standard NIST610

Sample ID	Ag107 ppm	Ag107 ppm LOD	Ag109 ppm	Ag109 ppm LOD	As ppm	As ppm LOD	Sb ppm	Sb ppm LOD
153_C	4.9	0.016	4.7	0.02	2700	0.37	0.277	0.063
153_B1_a	3.65	0.042	3.82	0.032	78	0.58	3.41	0.092
153_B1_b	1.38	0.057	1.56	0.043	10.2	0.78	0.97	0.12
153_B2	0.062	0.033	0.063	0.028	4.5	0.43	Below LOD	0.068
3415A_A1_a	0.3	0.016	0.31	0.012	7.74	0.27	Below LOD	0.061
3415A_A1_b	1.07	0.037	1.6	0.039	10.45	0.41	Below LOD	0.064
3415A_A2_a	0.205	0.032	0.32	0.034	33	0.35	Below LOD	0.056
3415A_A2_b	0.069	0.045	0.066	0.047	6.6	0.49	Below LOD	0.077
3415_A2_c	0.038	0.018	0.036	0.023	2.11	0.27	Below LOD	0.041
3415A_A3_a	0.29	0.027	0.39	0.033	10	0.39	Below LOD	0.061
3415A_A3_b	0.94	0.028	0.69	0.035	5.77	0.41	Below LOD	0.064
3415A_A3_c	0.317	0.015	0.335	0.022	6.73	0.28	Below LOD	0.055
3415A_D1	Below LOD	0.015	Below LOD	0.022	4.86	0.28	Below LOD	0.055
3415A_D2	Below LOD	0.024	Below LOD	0.024	2.8	0.28	Below LOD	0.051
3415A_D2_b	Below LOD	0.027	Below LOD	0.027	10.7	0.32	Below LOD	0.058
152_A_a	0.7	0.022	0.64	0.028	12.62	0.42	0.102	0.063
152_A_b	1.16	0.028	1.2	0.036	18	0.55	0.196	0.082
152_G1_a	0.38	0.062	0.31	0.051	12.13	0.91	Below LOD	0.15
152_G1_b	0.146	0.041	0.138	0.034	27.6	0.6	Below LOD	0.1

152_G2_a	0.194	0.051	0.156	0.034	9.01	0.68	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.12
152_G2_b	2	0.042	1.14	0.028	9.53	0.57	Below LOD	0.1
152_G2_c	0.066	0.034	0.05	0.032	5.36	0.49	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.075
152_B1_1	0.645	0.031	0.691	0.03	17.5	0.45	0.076	0.07
152_B2_a	0.284	0.031	0.258	0.033	11.63	0.7	Below LOD	0.094
152_B2_b	3.9	0.025	3.4	0.027	25	0.57	0.095	0.076
NB036_B1_a	Below LOD	0.016	Below LOD	0.02	75	0.36	Below LOD	0.06
NB036_B1_b	0.21	0.018	0.153	0.022	10.4	0.41	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.067
NB036_B1_c	0.02	0.016	0.027	0.02	10.5	0.37	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.062
NB036_B1_d	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.013	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.016	15.3	0.3	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.05
NB036_B1_f	4	0.02	5.7	0.011	11.9	0.22	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.044
NB036_B2_a	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.022	0.024	0.013	10.8	0.24	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.049
NB036_B2_b	1.06	0.017	1.14	0.02	16.6	0.32	Below LOD	0.04
NB036_A	79	0.013	61	0.015	5920	0.24	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.03
173_B1_a	0.35	0.018	0.39	0.012	10.7	0.24	Below LOD	0.048
173_B1_b	Below LOD	0.021	Below LOD	0.014	2.1	0.29	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.058
173_B2_a	0.107	0.014	0.114	0.014	4.69	0.29	Below LOD	0.058
173_B2_b	0.086	0.018	0.13	0.018	10	0.37	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.074
173_A2	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.015	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.012	2.23	0.25	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.035
173_A1_a	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.029	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.035	2.59	0.55	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.086
173_A1_b	Below LOD	0.023	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.028	1.91	0.44	Below LOD	0.068
173_A1_c	Below LOD	0.016	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.02	1.66	0.31	Below LOD	0.049
899A_E1_a	Below LOD	0.024	Below LOD	0.021	404	0.34	Below LOD	0.064

899A_E1_b	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.016	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.014	296	0.23	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.043
899A_E2_a	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.013	Below LOD	0.013	150	0.23	Below LOD	0.044
899A_E2_b	Below LOD	0.014	Below LOD	0.014	403	0.25	Below LOD	0.048
899A_E2_c	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.011	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.014	411	0.24	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.038
899A_F1	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.0089	Below LOD	0.011	330	0.19	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.03
899A_F2_a	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.016	Below LOD	0.013	356	0.26	Below LOD	0.043
899A_F2_b	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.015	Below LOD	0.0094	212	0.25	Below LOD	0.037
157_A1_a	1.2	0.067	1.35	0.043	29.4	1.2	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.17
157_A1_b	0.23	0.075	0.28	0.086	29.2	1.5	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.23
157_A2_a	1.7	0.079	2.4	0.092	33.3	1.6	Below LOD	0.25
157_A2_b	0.26	0.083	0.33	0.097	26.3	1.6	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \end{array}$	0.26
157_C1_a	2.83	0.021	2.89	0.025	30.8	0.31	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.059
157_C1_b	0.041	0.02	Below LOD	0.024	1.07	0.29	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.056
157_C2_a	6.5	0.031	6.5	0.034	11.6	0.91	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.12
157_C2_b	0.97	0.016	0.87	0.018	14.7	0.49	0.072	0.067
168A_D1_a	0.104	0.012	0.109	0.022	1.43	0.64	1.17	0.1
168A_D1_b	0.26	0.011	0.188	0.019	1.11	0.56	1.85	0.091
168A_D1_c	0.205	0.0081	0.202	0.014	1.15	0.42	2.73	0.069
168A_D1_d	0.4	0.011	0.38	0.02	0.72	0.59	9	0.097
168A_D1_e	0.085	0.017	0.066	0.015	1.24	0.49	1.6	0.077
168A_D2_a	0.6	0.021	0.6	0.018	2.68	0.6	11.1	0.095
168A_D2_b	0.226	0.02	0.26	0.017	2.18	0.56	6.7	0.09
168A_D2_c	0.561	0.012	0.544	0.01	1.93	0.34	18.4	0.054
168A_D3_a	0.432	0.0091	0.45	0.013	1.5	0.29	14.9	0.042
168A_D3_b	0.379	0.0098	0.347	0.0089	2.46	0.34	5.5	0.056
168A_C1_a	0.328	0.011	0.33	0.0099	0.53	0.38	6.7	0.063
168A_C1_b	0.126	0.012	0.148	0.011	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.43	0.83	0.07
168A_C2_a	0.263	0.015	0.255	0.011	0.57	0.46	2.13	0.053
168A_C2_b	0.617	0.025	0.76	0.017	2.5	0.74	0.67	0.085

895B_F1_a	Below LOD	0.0088	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.012	2.13	0.29	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.038
895B_F2_a	0.0056	NaN	Below LOD	0.01	1.9	0.27	Below LOD	0.037
895B_F2_b	Below LOD	0.0097	0.0075	0.0073	1.64	0.33	Below LOD	0.041
895B_E1_a	Below LOD	0.0081	Below LOD	0.0061	1.14	0.27	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.034
895B_E2_a	Below LOD	0.013	Below LOD	0.01	0.95	0.52	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.065
895B_E2_b	Below LOD	0.0097	Below LOD	0.0073	1.26	0.38	Below LOD	0.047
895B_E2_c	Below LOD	0.0083	Below LOD	0.0055	1.35	0.27	Below LOD	0.033
895B_E3	Below LOD	0.0073	Below LOD	0.0048	1.076	0.24	Below LOD	0.029
897A_A1	81	0.025	110	0.019	47.1	0.77	1.28	0.091
897A_A2	6.6	0.012	6.2	0.031	66	0.69	5.6	0.11
897A_A3	24.7	0.045	23.5	0.041	274	1.4	3.2	0.16
898A_A1	0.0109	0.007	0.0143	0.011	543	0.29	0.093	0.046
898A_A2_a	0.073	0.0085	0.095	0.0073	262	0.35	0.096	0.044
898A_A2_b	0.0229	0.0085	0.0202	0.0052	622	0.29	0.134	0.041
898A_B1_a	0.067	0.012	0.101	0.0071	920	0.4	0.209	0.056
898A_B1_b	1.04	0.015	1.16	0.0094	199	0.52	Below LOD	0.074
898A_B1_c	0.294	0.019	0.39	0.012	840	0.65	Below LOD	0.092
898A_B1_d	0.165	0.0089	0.169	0.0055	370	0.3	0.063	0.043
898A_B2_a	0.66	0.0076	0.83	0.012	828	0.33	0.057	0.044
898A_B2_b	0.04	0.0043	0.0292	NaN	326	0.24	Below LOD	0.038
164B_A1_a	0.83	0.083	0.94	NaN	3.7	3.7	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.5
164B _A1_b	0.63	0.099	0.53	NaN	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	4.4	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.6
164B _A1_c	10.4	0.071	6	NaN	Below LOD	3.1	$\begin{array}{\|l} \text { Below } \\ \text { LOD } \end{array}$	0.42
164B _A1_d	1.75	NaN	1.25	0.15	Below LOD	4.4	Below LOD	0.74
164B A1_e	0.62	NaN	0.57	0.12	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	3.5	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.59
164B _A2_a	0.65	NaN	0.68	0.098	Below LOD	2.8	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.48
164B _A2_b	0.5	NaN	0.54	0.12	Below LOD	3.6	Below LOD	0.6

\(\left.$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline \text { 164B_A2_c } & 1.36 & 0.08 & 1.15 & 0.066 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 2.6 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.45 \\
\hline \text { 164B_A2_d } & 0.79 & 0.086 & 0.73 & 0.071 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 2.9 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.49 \\
\hline \text { 164B_A3_a } & 0.479 & 0.059 & 0.53 & 0.048 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 1.9 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.33 \\
\hline \text { 164B_A3_b } & 0.61 & 0.072 & 0.31 & 0.071 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 3.3 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.44 \\
\hline \text { 164B_A3_c } & 0.49 & 0.049 & 0.3 & 0.049 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 2.3 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.3 \\
\hline \text { 164B_A4_a } & 0.35 & 0.053 & 0.251 & 0.053 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 2.5 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.33 \\
\hline \text { 164B A4_b } & 0.177 & 0.075 & 0.284 & 0.053 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 2.1 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.29 \\
\hline \text { 164B_B1_a } & 0.42 & 0.28 & 0.48 & 0.2 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 7.7 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 1.1 \\
\hline \text { 164B B1_b } & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.37 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.26 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 10 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 1.4 \\
\hline \text { 164B _B1_c } & 0.37 & 0.15 & 0.26 & 0.11 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 5.8 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.9 \\
\hline \text { 164B _B2_a } & 0.42 & 0.15 & 0.48 & 0.11 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 5.8 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.9 \\
\hline \text { 164B_B2_b } & 0.43 & 0.17 & 0.54 & 0.12 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 6.3 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.98 \\
\hline \text { 886B_F } & 0.13 & 0.012 & 0.153 & 0.01 & 100 & 0.42 & 2.9 & 0.051 \\
\hline \text { 886B_E } & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.012 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.016 & 10.9 & 0.4 & 0.17 & 0.048 \\
\hline \text { 171B_C1_a } & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.019 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.029 & 104.6 & 0.77 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.12 \\
\hline \text { 171B_C2_d } & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array} & 0.009 & 0.01 & \begin{array}{l}\text { Below } \\
\text { LOD }\end{array}
$$ \& 0.0089

LOD\end{array}\right) 0.01 ~\)| 83.8 |
| :--- |
| LOD |

171B_B1_a	Below LOD	0.0064	Below LOD	0.0063	10.6	0.36	$\begin{aligned} & \hline \text { Below } \\ & \text { I OD } \end{aligned}$	0.047
171B_B1_b	0.0051	0.0048	0.0096	0.0047	4.02	0.27	Below LOD	0.035
171B_B2_a	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.013	Below LOD	0.0074	6.14	0.45	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.064
171B_B2_b	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.0089	Below LOD	0.0052	3.96	0.32	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.045
154_A1_a	0.031	0.012	0.065	NaN	77	0.48	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.071
154_A1_b	Below LOD	0.014	Below LOD	NaN	232	0.55	Below LOD	0.081
154_A2_a	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.034	Below LOD	0.034	4.1	0.99	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.15
154_A2_b	Below LOD	0.019	Below LOD	0.019	5.71	0.55	Below LOD	0.083
154_A2_c	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.028	Below LOD	0.028	4.29	0.82	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.13
154_B1_a	Below LOD	0.048	Below LOD	0.049	1.6	1.4	Below LOD	0.21
154_B1_b	Below LOD	0.046	Below LOD	0.047	3.6	1.4	Below LOD	0.2
154_B1_c	0.45	0.038	0.32	0.038	23.1	1.1	$\begin{array}{\|l} \hline \begin{array}{l} \text { Below } \\ \text { LOD } \end{array} \\ \hline \end{array}$	0.16
154_B1_d	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.046	Below LOD	0.046	14.6	1.4	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.19
154_B2_a	0.12	0.061	0.12	0.044	7.8	1.2	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.19
154_B2_b	0.091	0.053	0.13	0.038	8.7	1	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.16
154_B2_c	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.079	Below LOD	0.057	2.5	1.5	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.25
154_B3_a	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.022	Below LOD	0.032	1.42	1.1	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.16
154_B3_b	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.02	Below LOD	0.028	1.53	0.98	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.14
154_B3_c	0.032	0.019	Below LOD	0.028	3.35	0.97	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.14
154_B3_d	0.037	0.014	0.14	0.02	1.28	0.71	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.1
154_B4_a	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.013	Below LOD	0.018	2.58	0.64	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.099
154_B4_b	0.159	0.018	0.028	0.027	5.7	0.93	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.14
154_B4_c	0.15	0.014	0.26	0.02	3.89	0.7	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.11

154_B5_a	Below LOD	0.014	Below LOD	0.021	2.16	0.71	Below LOD	0.11
154_B5_b	Below LOD	0.017	Below LOD	0.025	1.48	0.87	Below LOD	0.14
154_B5_c	Below LOD	0.016	Below LOD	0.024	2.16	0.83	Below LOD	0.13
900_E1_a	Below LOD	0.059	Below LOD	0.062	4.9	2.9	Below LOD	0.56
900_E1_b	Below LOD	0.036	Below LOD	0.038	2.6	1.8	Below LOD	0.34
900_E1_c	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.028	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.029	3.5	1.4	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.26
900_E1_d	Below LOD	0.039	Below LOD	0.041	Below LOD	1.9	Below LOD	0.37
900_E1_e	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.03	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.031	4.6	1.4	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.28
900_E1_f	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.066	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.079	Below LOD	1.9	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.3
900_E1_g	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.076	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.092	Below LOD	2.2	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.35
900_E1_h	Below LOD	0.044	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.053	3.4	1.3	Below LOD	0.2
900_E2_a	$\begin{array}{\|l} \text { Below } \\ \text { LOD } \end{array}$	0.043	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.052	3.21	1.2	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.2
900_E2_b	Below LOD	0.052	Below LOD	0.063	4.6	1.5	Below LOD	0.24
900_E2_c	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.12	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.051	3.2	2.5	Below LOD	0.35
900_E2_d	Below LOD	0.075	Below LOD	0.033	4.6	1.6	Below LOD	0.23
900_E2_e	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.11	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.05	6	2.4	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.35
900_F1_a	$\begin{aligned} & \hline \begin{array}{l} \text { Below } \\ \text { LOD } \\ \hline \end{array} .8 \text {. } \\ & \hline \end{aligned}$	0.062	0.037	0.027	10.67	1.3	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.19
900_F1_b	0.48	0.076	0.48	NaN	8.4	2	Below LOD	0.31
900_F2_a	Below LOD	0.037	0.004	NaN	7.5	0.96	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.15
900_F2_b	Below LOD	0.034	0.02	NaN	10	0.89	Below LOD	0.14
900_F2_c	Below LOD	0.032	Below LOD	0.023	5.9	1.2	Below LOD	0.16
159_A1	1.28	0.061	1.28	0.045	3.4	2.4	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.32
159_A2	1.2	NaN	1.37	0.075	4.29	1.9	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.26

$159 _$A3	1.8	0.063	1.69	NaN	4.38	2.1	Below LOD	0.29
$159 _$B1	1.14	0.033	1.11	0.067	Below LOD	2	Below LOD	0.29
$159 _$B2	1.5	0.051	1.57	NaN	Below LOD	2	Below LOD	0.29

Table F5. Concentrations of Pb and Bi in ppm in the samples under the standard NIST610

Comments	Pb ppm	Pb ppm LOD	Bi ppm	Bi ppm LOD
153_C	28	0.017	57	0.011
153_B1_a	118	0.029	50	0.017
153_B1_b	46	0.04	14.4	0.022
153_B2	0.48	0.026	0.044	0.014
3415A_A1_a	2.55	0.011	0.49	0.0079
3415A_A1_b	1.34	0.025	0.37	0.014
3415A_A2_a	0.82	0.022	0.282	0.013
3415A_A2_b	3.6	0.03	0.23	0.017
3415_A2_c	0.73	0.018	0.149	0.0075
3415A_A3_a	1.94	0.026	0.48	0.011
3415A_A3_b	2.23	0.027	0.52	0.012
3415A_A3_c	0.9	0.015	0.454	0.0081
3415A_D1	0.059	0.015	Below LOD	0.0081
3415A_D2	0.039	0.017	Below LOD	0.01
3415A_D2_b	0.038	0.019	Below LOD	0.012
152_A_a	9.1	0.024	3.93	0.013
152_A_b	18	0.03	9.3	0.017
152_G1_a	2.08	0.042	1.56	0.032
152_G1_b	1.19	0.027	0.911	0.021
152_G2_a	1.1	0.042	1.08	0.019
152_G2_b	4.63	0.035	5.73	0.016
152_G2_c	0.314	0.027	0.336	0.017
152_B1_1	10.02	0.025	5.83	0.016
152_B2_a	5.46	0.029	2.95	0.011
152_B2_b	63	0.023	9.1	0.0091
NB036_B1_a	0.063	0.021	0.023	0.0084
NB036_B1_b	1.04	0.023	2	0.0094

NB036_B1_c	0.27	0.021	0.3	0.0086
NB036_B1_d	0.082	0.017	0.071	0.0069
NB036_B1_f	17	0.012	11	0.006
NB036_B2_a	0.234	0.014	0.34	0.0066
NB036_B2_b	41	0.012	5.9	0.0079
NB036_A	62	0.0086	220	0.0058
173_B1_a	5.4	0.013	4.4	0.0072
173_B1_b	0.162	0.015	0.411	0.0088
173_B2_a	4.7	0.017	1.83	0.0072
173_B2_b	6.4	0.022	1.7	0.0093
173_A2	0.183	0.011	0.214	0.0063
173_A1_a	0.202	0.036	0.055	0.013
173_A1_b	0.192	0.029	0.028	0.01
173_A1_c	0.15	0.021	0.047	0.0075
899A_E1_a	0.039	0.019	Below	0.0095
L99A_E1_b	0.54	0.013	0.142	0.0064
899A_E2_a	Below	0.043	Below	0.035
LOD		LOD		
899A_E2_b	0.102	0.047	0.04	0.038
899A_E2_c	0.2	0.013	0.057	0.0064
899A_F1	0.0311	0.011	0.0054	0.0052
899A_F2_a	0.0196	0.014	Below	0.0061
LOD				
899A_F2_b	0.0227	0.011	0.0098	0.0046
157_A1_a	2.66	0.053	13.9	0.021
157_A1_b	0.8	0.066	1.28	0.035
157_A2_a	3.3	0.071	5.2	0.037
157_A2_b	1.72	0.074	5.8	0.039
157_C1_a	2.99	0.02	23.4	0.012
157_C1_b	0.18	0.019	1.38	0.011
157_C2_a	7.3	0.046	38	0.019
157_C2_b	3.5	0.025	16.8	0.01
168A_D1_a	28	0.029	0.28	0.017
168A_D1_b	48	0.026	0.34	0.015
168A_D1_c	43	0.019	0.284	0.011
168A_D1_d	118	0.027	0.36	0.016
168A_D1_e	28	0.02	0.114	0.016
168A_D2_a	150	0.025	3.7	0.019
168A_D2_b	128	0.023	5.2	0.018
168A_D2_c	270	0.014	1.55	0.011
168A_D3_a	217	0.014	0.26	0.0057

168A_D3_b	151	0.016	10.8	0.0078
168A_C1_a	86	0.018	0.074	0.0087
168A_C1_b	6.4	0.02	0.144	0.0097
168A_C2_a	29.3	0.015	0.064	0.01
168A_C2_b	11.9	0.025	0.052	0.017
895B_F1_a	0.0303	0.011	Below LOD	0.0062
895B_F2_a	0.018	0.0096	0.0095	0.0052
895B_F2_b	0.015	0.012	Below LOD	0.0044
895B_E1_a	0.0192	0.0096	0.0044	0.0037
895B_E2_a	0.067	0.019	0.033	0.01
895B_E2_b	0.02	0.014	0.019	0.0073
895B_E2_c	0.0167	0.0087	Below LOD	0.0058
895B_E3	0.0194	0.0076	Below LOD	0.0051
897A_A1	$7.10 \mathrm{E}+03$	0.037	30	0.014
897A_A2	167	0.037	77	0.018
897A_A3	430	0.067	61	0.034
898A_A1	2.95	0.013	2.14	0.0073
898A_A2_a	3.3	0.0098	3.78	0.0048
898A_A2_b	3.59	0.016	1.82	0.0048
898A_B1_a	4.55	0.021	7.1	0.0066
898A_B1_b	3.83	0.028	18.1	0.0087
898A_B1_c	7.9	0.035	20.8	0.011
898A_B1_d	2.5	0.016	3.81	0.005
898A_B2_a	5.2	0.015	33	0.007
898A_B2_b	1.2	0.01	3.29	0.0036
164B_A1_a	3.54	0.14	3	0.084
164B_A1_b	1.73	0.17	0.84	0.1
164B_A1_c	4.1	0.12	1.53	0.071
164B_A1_d	7.1	0.22	6.9	0.057
164B_A1_e	17.6	0.18	2.65	0.046
164B_A2_a	2.54	0.14	0.86	0.037
164B_A2_b	4.13	0.18	0.36	0.047
164B_A2_c	5.07	0.1	4.6	0.056
164B_A2_d	2.88	0.11	1.57	0.06
164B_A3_a	1.86	0.076	0.59	0.041
164B_A3_b	1.85	0.12	0.88	0.069
164B A3_c	2.68	0.08	1.39	0.047
164B_A4_a	1.27	0.087	0.57	0.051

164B _A4_b	2.62	0.082	0.421	0.039
164B _B1_a	4.4	0.3	1.3	0.14
164B _B1_b	8.7	0.41	0.41	0.19
164B _B1_c	7.27	0.27	0.95	0.1
164B _B2_a	4.41	0.27	0.5	0.1
164B _B2_b	6.63	0.29	0.68	0.11
886B_F	37	0.013	0.68	0.011
886B_E	2.2	0.012	0.104	0.0045
171B_C1_a	0.19	0.037	0.07	0.014
171B_C1_b	0.265	0.055	0.79	0.021
171B_C1_c	0.149	0.035	0.042	0.014
171B_C1_d	0.169	0.033	0.033	0.017
171B_C2_a	1.2	0.033	2.1	0.017
171B_C2_b	0.169	0.034	0.165	0.018
171B_C2_c	0.161	0.03	0.214	0.015
171B_C2_d	0.081	0.018	0.151	0.012
171B_C2_e	0.08	0.021	0.052	0.014
171B_B1_a	0.039	0.013	0.081	0.0085
171B_B1_b	0.078	0.0097	0.102	0.0063
171B_B2_a	0.046	0.013	0.326	0.0076
171B_B2_b	0.034	0.0093	0.0601	0.0053
154_A1_a	1.26	0.017	2.23	0.012
154_A1_b	0.088	0.019	Below LOD	0.014
154_A2_a	0.129	0.04	Below LOD	0.026
154_A2_b	0.143	0.022	Below LOD	0.014
154_A2_c	0.065	0.033	Below LOD	0.022
154_B1_a	0.25	0.055	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.029
154_B1_b	0.17	0.052	0.12	0.028
154_B1_c	3.4	0.043	1.93	0.023
154_B1_d	0.72	0.052	0.28	0.027
154_B2_a	0.99	0.076	0.57	0.019
154_B2_b	1.89	0.065	0.83	0.016
154_B2_c	0.27	0.098	0.032	0.024
154_B3_a	0.22	0.053	0.063	0.02
154_B3_b	0.3	0.047	0.201	0.018
154_B3_c	0.065	0.046	0.035	0.017
154_B3_d	2.1	0.034	1.77	0.013

154_B4_a	0.137	0.027	0.0122	0.011
154_B4_b	2.8	0.039	1.36	0.015
154_B4_c	3.7	0.029	2.6	0.011
154_B5_a	0.12	0.03	0.032	0.012
154_B5_b	0.146	0.037	Below LOD	0.014
154_B5_c	0.068	0.035	Below LOD	0.014
900_E1_a	9.6	0.097	1.5	0.079
900_E1_b	Below LOD	0.059	Below LOD	0.048
900_E1_c	0.077	0.046	Below LOD	0.037
900_E1_d	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.064	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.052
900_E1_e	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.048	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.04
900_E1_f	Below LOD	4.8	Below LOD	0.065
900_E1_g	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	5.6	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.076
900_E1_h	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	3.2	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.044
900_E2_a	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	3.2	Below LOD	0.043
900_E2_b	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	3.8	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.052
900_E2_c	Below LOD	0.071	Below LOD	0.045
900_E2_d	0.135	0.046	Below LOD	0.029
900_E2_e	0.32	0.07	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.044
900_F1_a	0.168	0.038	Below LOD	0.024
900_F1_b	39	0.094	17.9	0.045
900_F2_a	0.107	0.045	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.022
900_F2_b	0.069	0.042	Below LOD	0.02
900_F2_c	1.34	0.05	1.6	0.018
159_A1	1.35	0.098	0.96	0.035
159_A2	4	0.072	4.6	0.03
159_A3	22	0.063	4.9	0.042

159_B1	3.6	0.064	1.94	0.024
159_B2	2.44	0.068	28	0.04

F. 6 Concentrations of Co, As, Se 77 and Se 78 in ppm in the samples under the standard Mass 1

Sample	Co ppm	Co ppm LOD	As ppm	As ppm LOD	Se 77 ppm	Se 77 ppm LOD	Se 78 ppm	Se 78 ppm LOD
153_C	8900	0.018	1890	0.25	20.4	0.39	17.5	6
153_B1_a	46	0.022	54	0.4	4.4	0.58	8	8
153_B1_b	46	0.03	7	0.54	0.96	0.79	11	11
153_B2	12	0.027	3.09	0.3	11.1	0.42	9	5.4
3415A_A1_a	343	0.012	5.39	0.19	10.74	0.37	12	4.9
3415A_A1_b	643	0.035	7.28	0.28	11.42	0.44	14.2	5.1
3415A_A2_a	412	0.031	22.9	0.25	3.42	0.38	4.5	4.5
3415A_A2_b	140	0.043	4.61	0.34	8.7	0.53	10.3	6.2
3415_A2_c	353	0.019	1.48	0.18	11.12	0.35	10.3	3.8
3415A_A3_a	63	0.028	6.97	0.27	11.3	0.52	9.8	5.6
3415A_A3_b	144	0.029	4.04	0.29	8.15	0.54	6.9	5.9
3415A_A3_c	735	0.021	4.72	0.2	11.36	0.3	10.2	3.9
3415A_D1	127	0.021	3.42	0.2	4.44	0.3	6.8	3.9
3415A_D2	111	0.019	1.97	0.2	3.07	0.35	5.1	5.1
3415A_D2_b	50	0.021	7.55	0.23	15	0.4	13.7	5.8
152_Ghost1_	246	0.023	8.92	0.3	18.2	0.46	11.9	5.8
a								
152_Ghost1_	106	0.03	12.7	0.39	18.7	0.59	19.9	7.5
b								
152_G1_a	133	0.046	8.6	0.64	21.5	1.2	18.1	15
152_G1_b	251	0.031	19.6	0.43	16.75	0.82	19.5	10
152_G2_a	155.5	0.058	6.41	0.48	19.1	0.92	12	11
152_G2_b	370	0.048	6.79	0.4	14.5	0.77	12.9	8.9
152_G2_c	49.7	0.034	3.82	0.35	15.9	0.62	8.4	7.5
152_B1_1	109	0.031	12.5	0.32	22.1	0.57	14.3	6.9
152_B2_a	97	0.039	8.33	0.5	21.6	0.66	19.8	9.1
152_B2_b	246	0.031	17.9	0.41	21	0.53	21.6	7.3
NB036_B1_a	6280	0.018	60	0.29	18.8	0.35	18.9	6.4
NB036_B1_b	550	0.02	8.3	0.32	32.2	0.39	27.5	7.1
NB036_B1_c	668	0.018	8.3	0.3	34.2	0.36	32.3	6.6
NB036_B1_d	800	0.015	12.2	0.24	29.9	0.29	29.6	5.3

NB036_B1_f	2430	0.016	9.4	0.18	41.9	0.24	44.5	4.5
NB036_B2_a	1030	0.018	8.6	0.2	26.3	0.27	27	5
NB036_B2_b	2100	0.019	13.2	0.26	24.7	0.45	25.7	5.6
NB036_A	20350	0.014	4680	0.2	27.6	0.33	28.5	4.1
173_B1_a	2710	0.019	8.4	0.2	7.79	0.3	7.2	4.8
173_B1_b	90	0.023	1.66	0.24	6.49	0.36	12.7	5.9
173_B2_a	2170	0.015	3.7	0.24	7.46	0.38	6.2	5.9
173_B2_b	458	0.019	7.9	0.31	10.8	0.49	14	7.6
173_A2	1110	0.018	1.76	0.21	6.46	0.28	6.9	4.2
173_A1_a	77	0.038	2.04	0.48	5.5	0.62	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	12
173_A1_b	125	0.03	1.5	0.38	4.87	0.49	Below LOD	9.5
173_A1_c	859	0.022	1.31	0.27	5.41	0.36	7.4	6.9
899A_E1_a	340	0.017	317	0.3	5.9	0.45	8.6	8.5
899A_E1_b	290	0.011	232	0.2	10.9	0.3	9.8	5.8
899A_E2_a	107	0.027	117	0.21	7.25	0.29	Below LOD	4.9
899A_E2_b	310	0.03	316	0.23	7.7	0.31	6	5.4
899A_E2_c	99	0.019	322	0.21	8.2	0.34	5.1	4.8
899A_F1	278	0.015	257.9	0.17	7.18	0.28	6.9	3.9
899A_F2_a	204	0.021	278	0.23	6.79	0.4	9.3	5.5
899A_F2_b	338	0.02	165.7	0.23	7.54	0.29	7.5	5.2
157_A1_a	237	0.09	22.9	1	7.5	1.3	Below LOD	24
157_A1_b	1910	0.11	22.7	1.3	13.8	1.7	Below LOD	30
157_A2_a	1680	0.12	25.9	1.4	16.6	1.8	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	32
157_A2_b	1260	0.12	20.5	1.4	7.7	1.9	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	33
157_C1_a	228	0.034	23.9	0.26	14.2	0.51	10.8	7.3
157_C1_b	6.39	0.032	0.83	0.25	5.91	0.47	Below LOD	6.8
157_C2_a	80	0.039	9	0.75	10.6	0.85	Below LOD	13
157_C2_b	127	0.021	11.4	0.4	17.3	0.45	18.2	6.8
168A_D1_a	0.52	0.032	0.93	0.41	8.1	0.67	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	8.6
168A_D1_b	0.057	0.028	0.72	0.36	7.9	0.58	10.2	7.5
168A_D1_c	3.14	0.021	0.74	0.27	24.6	0.44	25.1	5.6
168A_D1_d	0.27	0.03	0.47	0.38	22.7	0.62	24.5	7.9
168A_D1_e	0.22	0.018	0.8	0.31	11.7	0.65	10.4	8.1

168A_D2_a	8.7	0.022	1.74	0.38	15.3	0.79	19	9.9
168A_D2_b	0.072	0.02	1.42	0.36	33.5	0.75	31.7	9.3
168A_D2_c	0.073	0.012	1.25	0.22	21.69	0.45	21.6	5.6
168A_D3_a	0.344	0.009 9	0.98	0.18	15.9	0.26	15.3	5.3
168A_D3_b	4	0.011	1.6	0.21	22.2	0.28	20.3	5.3
168A_C1_a	1.66	0.012	0.35	0.24	29.7	0.31	30	5.9
168A_C1_b	7.2	0.014	Below LOD	0.27	38.2	0.34	38.2	6.5
168A_C2_a	2.6	0.018	0.37	0.28	31.7	0.41	32.3	6.6
168A_C2_b	1.17	0.028	1.64	0.46	17.5	0.66	21.9	11
895B_F1_a	464	0.011	1.4	0.18	4.56	0.28	Below LOD	4.7
895B_F2_a	867	0.006 8	1.26	0.17	4.16	0.27	6.7	4.6
895B_F2_b	447	0.013	1.08	0.2	3.91	0.31	4.5	4.5
895B_E1_a	441	0.011	0.753	0.17	4.27	0.25	4.4	3.7
895B_E2_a	389	0.025	0.63	0.32	4.61	0.49	Below LOD	6.8
895B_E2_b	559	0.018	0.84	0.23	4.19	0.36	Below LOD	4.9
895B_E2_c	386	0.01	0.9	0.16	4.27	0.23	5.3	4.1
895B_E3	366.5	0.009	0.718	0.14	4.02	0.2	4.8	3.6
1	0.27	Below LOD	3	30	3.9	Below LOD	81	
897A_A1	$3.18 \mathrm{E}+0$	0.023	31.5	0.47	49.4	0.7	43.6	11
4	0.032	44	0.42	38.9	0.94	29.5	15	
897A_A2	2900	0.038		0.05	185	0.88	75.6	1.6

164B _A1_c	659	0.19	Below LOD	2.1	27.5	2.8	$\begin{aligned} & \hline \text { Below } \\ & \text { a } \end{aligned}$	58
164B A1_d	670	0.29	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	3	26.5	4.3	$\begin{aligned} & \text { Below } \\ & \text { IOD } \end{aligned}$	83
164B _A1_e	664	0.23	Below LOD	2.4	24.8	3.4	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	67
164B _A2_a	697	0.19	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	1.9	26.9	2.8	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	54
164B _A2_b	709	0.24	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	2.4	26.6	3.5	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	68
164B _A2_c	511	0.058	Below LOD	1.8	26.1	2.7	Below LOD	54
164B _A2_d	683	0.062	Below LOD	1.9	29.2	2.9	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	59
164B _A3_a	868	0.042	Below LOD	1.3	26	2	Below LOD	40
164B _A3_b	704	0.27	Below LOD	2.2	20.7	3.1	Below LOD	54
164B _A3_c	849	0.18	Below LOD	1.5	24.3	2.1	Below LOD	37
164B _A4_a	690	0.2	Below LOD	1.6	24.1	2.3	Below LOD	40
164B _A4_b	873	0.092	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \end{array}$	1.4	26.4	2.4	Below LOD	45
164B _B1_a	1066	0.34	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	4.9	28.7	9	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	170
164B B1_b	1077	0.45	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	6.6	39	12	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	230
164B _B1_c	1161	0.39	Below LOD	3.7	35	8	Below LOD	120
164B _B2_a	1100	0.39	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	3.7	35.3	8	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	120
164B _B2_b	1139	0.42	Below LOD	4	34.1	8.7	Below LOD	130
886B_F	680	0.039	67	0.27	10.1	0.36	9.5	8.2
886B_E	88	0.021	7.38	0.25	4.64	0.33	Below LOD	7.2
171B_C1_a	1640	0.05	70.9	0.48	4.48	0.82	Below LOD	16
171B_C1_b	1090	0.074	78.1	0.7	7.1	1.2	Below LOD	24
171B_C1_c	645	0.048	56.2	0.45	6.96	0.78	Below LOD	15
171B_C1_d	751	0.041	67.2	0.51	8.9	0.77	Below LOD	17

171B_C2_a	4190	0.041	56	0.5	15	0.77	18	16
171B_C2_b	3520	0.042	6.63	0.52	16.5	0.8	Below LOD	17
171B_C2_c	4910	0.037	8.1	0.46	18.2	0.7	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	15
171B_C2_d	957	0.038	57	0.31	5.8	0.53	Below LOD	10
171B_C2_e	820	0.043	35.9	0.35	7.8	0.6	Below LOD	12
171B_B1_a	151	0.027	7.25	0.22	10.9	0.38	8.5	7.3
171B_B1_b	315	0.02	2.74	0.16	8.91	0.28	9.7	5.4
171B_B2_a	41.2	0.017	4.21	0.28	15.8	0.41	13.5	8.1
171B_B2_b	444	0.012	2.72	0.19	14.9	0.29	17.1	5.7
154_A1_a	29.3	0.028	54	0.3	12.1	0.52	13.6	8.3
154_A1_b	102	0.031	161	0.34	11.1	0.59	9.6	9.4
154_A2_a	168	0.056	2.85	0.62	18.5	0.85	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	21
154_A2_b	0.41	0.031	4.01	0.34	9.8	0.47	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	12
154_A2_c	3	0.046	3.02	0.51	10.9	0.7	20.8	17
154_B1_a	53	0.1	1.12	0.9	3.5	1.3	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	30
154_B1_b	25.2	0.096	2.6	0.86	4.7	1.3	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	28
154_B1_c	3.5	0.078	16.3	0.7	19.5	1	Below LOD	23
154_B1_d	18	0.095	10.3	0.85	17.8	1.3	33	28
154_B2_a	412	0.089	5.5	0.74	5.9	1.4	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	26
154_B2_b	830	0.076	6.2	0.63	14	1.2	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	22
154_B2_c	99	0.11	1.77	0.95	7.4	1.9	Below LOD	33
154_B3_a	45.4	0.048	1.02	0.71	5.2	1.3	Below LOD	27
154_B3_b	162	0.042	1.09	0.62	4.7	1.1	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	24
154_B3_c	49	0.042	2.4	0.61	4.7	1.1	Below LOD	24
154_B3_d	145	0.03	0.92	0.45	3.26	0.82	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	17
154_B4_a	110	0.052	1.86	0.41	5.16	0.61	Below LOD	11
154_B4_b	26.7	0.075	4.12	0.6	13	0.89	Below LOD	16

$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline \text { 154_B4_c } & 127 & 0.056 & 2.81 & 0.45 & 5.9 & 0.67 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 12 \\ \hline \text { 154_B5_a } & 43.1 & 0.057 & 1.56 & 0.46 & 6.9 & 0.68 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 12 \\ \hline \text { 154_B5_b } & 87 & 0.07 & 1.08 & 0.57 & 3.5 & 0.84 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 15 \\ \hline \text { 154_B5_c } & 112 & 0.066 & 1.57 & 0.54 & 5.6 & 0.79 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 15 \\ \hline \text { 900_E1_a } & 346 & 0.23 & 3.7 & 2.4 & 39 & 3.4 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 64 \\ \hline \text { 900_E1_b } & 134 & 0.14 & 1.9 & 1.5 & 8.2 & 2.1 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 39 \\ \hline \text { 900_E1_c } & 98 & 0.11 & 2.63 & 1.1 & 5.4 & 1.6 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 30 \\ \hline \text { 900_E1_d } & 60 & 0.16 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 1.6 & 7.6 & 2.2 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 42 \\ \hline \text { 900_E1_e } & 84 & 0.12 & 3.41 & 1.2 & 3 & 1.7 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 32 \\ \hline \text { 900_E1_f } & 78 & 0.14 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 1.6 & 2.7 & 2.2 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 48 \\ \hline \text { 900_E1_g } & 55.4 & 0.16 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 1.8 & 5.8 & 2.6 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 56 \\ \hline \text { 900_E1_h } & 61.8 & 0.094 & 2.55 & 1.1 & 4.7 & 1.5 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 32 \\ \hline \text { 900_E2_a } & 121 & 0.095 & 2.39 & 1 & 6.3 & 1.5 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 31 \\ \hline \text { 900_E2_b } & 91 & 0.12 & 3.4 & 1.3 & 4.1 & 1.8 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 38 \\ \hline \text { 900_E2_c } & 151 & 0.23 & 2.4 & 2 & 6 & 2.9 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 55 \\ \hline \text { 900_F2_c } & 400 & 0.08 & 4.4 & 0.97 & 3.7 & 1.7 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 24 \\ \hline \text { 900_E2_d } & 149 & 0.15 & 3.41 & 1.3 & 5.2 & 1.9 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 36 \\ \hline \text { 900_E2_e } & 511 & 0.23 & 4.5 & 2 & 10.8 & 2.8 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 55 \\ \hline \text { 900_F1_a } & 3190 & 0.13 & 7.95 & 1.1 & 4.55 & 1.5 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 29 \\ \text { LOD }\end{array}\right\} 46$

$159 _A 2$	58.8	0.16	3.21	1.4	28	2.7	Below LOD	38
$159 _$A3	142	0.16	3.29	1.5	28.3	2.5	Below LOD	38
$159 _$B1	57.3	0.18	Below LOD	1.5	26.7	2.2	43	34
$159 _$B2	58.1	0.14	Below LOD	1.4	27.2	1.8	Below LOD	34

F. 7 Concentrations of $\mathrm{Ag} 107, \mathrm{Ag} 108, \mathrm{Sb}$ and Bi in ppm in the samples under the standard Mass 1.

Comments	Ag 107 ppm	Ag 107 ppm	Ag 108 ppm LOD	Ag 108 ppm LOD	Sb ppm	Sb ppm LOD	Bi ppm	Bi ppm LOD
153_C	3.4	0.011	3.4	0.014	0.169	0.038	4.1	0.0008
153_B1_a	2.63	0.03	2.73	0.023	2.09	0.056	3.55	0.0012
153_B1_b	0.99	0.041	1.11	0.03	0.6	0.075	1.03	0.0016
153_B2	0.045	0.025	0.045	0.02	0.042	0.042	0.0031	0.0009 6
3415A_A1_ a	0.218	0.012	0.223	0.008 9	0.037	0.037	0.035	0.0005 6
3415A_A1_ b	0.8	0.028	1.16	0.028	0.039	0.039	0.0266	0.001
3415A_A2_ a	0.153	0.025	0.234	0.025	0.034	0.034	0.0203	0.0008 9
3415A_A2_ b	0.052	0.034	0.048	0.034	0.047	0.047	0.0166	0.0012
3415_A2_c	0.028	0.014	0.025	0.016	0.025	0.025	0.0107	0.0005 9
3415A_A3_ a	0.22	0.021	0.28	0.024	0.038	0.038	0.035	0.0007 9
3415A_A3_ b	0.71	0.021	0.5	0.025	0.039	0.039	0.0376	0.0008 3
3415A_A3_ c	0.238	0.012	0.243	0.016	0.034	0.034	0.0329	0.0005 8
3415A_D1	0.012	0.012	0.016	0.016	0.034	0.034	Below LOD	0.0005 8
3415A_D2	0.018	0.018	0.018	0.018	0.031	0.031	Below LOD	0.0007 3
3415A_D2_ b	0.021	0.021	0.02	0.02	0.036	0.036	Below LOD	0.0008 3

152_A_a	0.52	0.017	0.46	0.021	0.064	0.039	0.288	$\begin{aligned} & 0.0009 \\ & 4 \end{aligned}$
152_A_b	0.87	0.022	0.86	0.026	0.123	0.051	0.68	0.0012
152_G1_a	0.28	0.049	0.222	0.038	Below LOD	0.096	0.115	0.0023
152_G1_b	0.109	0.032	0.098	0.025	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.064	0.0673	0.0015
152_G2_a	0.145	0.04	0.111	0.025	Below LOD	0.076	0.08	0.0014
152_G2_b	1.5	0.033	0.82	0.021	Below LOD	0.063	0.425	0.0012
152_G2_c	0.049	0.026	0.035	0.024	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.047	0.0249	0.0013
152_B1_1	0.479	0.024	0.493	0.022	0.048	0.044	0.434	0.0012
152_B2_a	0.21	0.024	0.184	0.025	Below LOD	0.059	0.22	$\begin{aligned} & \hline 0.0008 \\ & 3 \end{aligned}$
152_B2_b	2.9	0.019	2.4	0.02	0.061	0.048	0.68	$\begin{aligned} & 0.0006 \\ & 7 \end{aligned}$
$\begin{aligned} & \text { NB036_B1_ } \\ & \text { a } \end{aligned}$	Below LOD	0.012	Below LOD	0.015	Below LOD	0.039	0.0018	$\begin{aligned} & \hline 0.0006 \\ & 8 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { NB036_B1_ } \\ & \text { b } \end{aligned}$	0.16	0.014	0.121	0.017	Below LOD	0.044	0.16	$\begin{aligned} & \hline 0.0007 \\ & 6 \end{aligned}$
$\begin{aligned} & \text { NB036_B1_ } \\ & \mathrm{c} \end{aligned}$	0.016	0.012	0.022	0.015	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.04	0.024	0.0007
$\begin{aligned} & \text { NB036_B1_ } \\ & \text { d } \end{aligned}$	Below LOD	0.01	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.012	Below LOD	0.032	0.0057	$\begin{aligned} & 0.0005 \\ & 7 \end{aligned}$
$\begin{aligned} & \text { NB036_B1_ } \\ & \text { f } \end{aligned}$	3.1	0.015	4.5	$\begin{aligned} & 0.008 \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.029	0.88	$\begin{aligned} & 0.0004 \\ & 9 \end{aligned}$
$\begin{aligned} & \text { NB036_B2_ } \\ & \text { a } \end{aligned}$	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.017	0.019	$\begin{aligned} & 0.009 \\ & 4 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.032	0.027	$\begin{aligned} & 0.0005 \\ & 5 \end{aligned}$
$\begin{aligned} & \text { NB036_B2_ } \\ & \text { b } \end{aligned}$	0.83	0.013	0.91	0.015	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.026	0.47	$\begin{aligned} & 0.0006 \\ & 6 \end{aligned}$
NB036_A	62	$\begin{aligned} & \hline 0.009 \\ & 8 \end{aligned}$	49	0.011	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.019	17	$\begin{aligned} & \hline 0.0004 \\ & 9 \end{aligned}$
173_B1_a	0.27	0.014	0.3	$\begin{aligned} & \hline 0.008 \\ & 8 \end{aligned}$	0.032	0.03	0.35	$\begin{aligned} & 0.0006 \\ & 3 \end{aligned}$
173_B1_b	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.017	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.011	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.037	0.0326	$\begin{aligned} & \hline 0.0007 \\ & 7 \\ & \hline \end{aligned}$
173_B2_a	0.084	0.011	0.09	0.011	Below LOD	0.037	0.145	$\begin{aligned} & 0.0006 \\ & 4 \end{aligned}$
173_B2_b	0.067	0.014	0.104	0.014	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.048	0.135	$\begin{aligned} & 0.0008 \\ & 3 \end{aligned}$
173_A2	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.012	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	$\begin{aligned} & \hline 0.008 \\ & 8 \end{aligned}$	Below LOD	0.023	0.0169	$\begin{aligned} & 0.0005 \\ & 7 \end{aligned}$

$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline \text { 173_A1_a } & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.023 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.026 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.055 & 0.0043 & 0.0012 \\ \hline \text { 173_A1_b } & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.018 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.021 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.044 & 0.0022 & \begin{array}{l}0.0009 \\ 6\end{array} \\ \hline \text { 173_A1_c } & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.013 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.015 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.031 & 0.0037 & \begin{array}{l}0.0006 \\ 9\end{array} \\ \hline \text { 899A_E1_a } & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.019 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.016 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.041 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & \begin{array}{l}0.0008 \\ 9\end{array} \\ \hline \text { 899A_E1_b } & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.013 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.011 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.028 & 0.0112 & 0.0006 \\ \hline \text { 899A_E2_a } & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.01 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & \begin{array}{l}0.009 \\ 6\end{array} & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.028 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.0033 \\ \hline \text { 899A_E2_b } & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.011 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.011 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.031 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.0036 \\ \hline \text { 899A_E2_c } & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & \begin{array}{l}0.008 \\ 7\end{array} & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.01 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.024 & 0.0045 & 0.0006 \\ \hline \text { 899A_F1 } & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & \begin{array}{l}0.007 \\ 1\end{array} & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & \begin{array}{l}0.008 \\ 4\end{array} & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.02 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.0005 \\ \hline \text { 899A_F2_a } & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.013 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & \begin{array}{l}0.009 \\ 7\end{array} & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.028 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & \begin{array}{l}0.0005 \\ 8\end{array} \\ \hline \text { 899A_F2_b } & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.012 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & \begin{array}{l}0.007 \\ 2\end{array} & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.024 & \begin{array}{l}0.0007 \\ 7\end{array} & \begin{array}{l}0.0004 \\ 3\end{array} \\ \hline \text { 168A_D1_d } & 0.279 & \begin{array}{l}0.007 \\ 8\end{array} & \begin{array}{l}0.261 \\ 5\end{array} & 0.014 & \begin{array}{l}5.2 \\ \text { Below } \\ \text { LOD }\end{array} & 0.11 & 1.09 & 0.002 \\ \hline \text { 157_A1_a } & 0.95 & 0.054 & 1.05 & 0.033 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.15 & 0.1 & 0.0032 \\ \hline \text { 157_A1_b } & 0.18 & 0.06 & 0.22 & 0.066 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.16 & 0.41 & 0.0034 \\ \hline \text { 168A_D1_c } & 0.143 \\ \text { LOD } \\ \text { LOD }\end{array}\right)$
$\left.\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline \text { 168A_D1_e } & 0.059 & 0.012 & 0.046 & 0.01 & 0.94 & 0.046 & 0.0077 & 0.001 \\ \hline \text { 168A_D2_a } & 0.418 & 0.014 & 0.42 & 0.012 & 6.5 & 0.057 & 0.25 & 0.0013 \\ \hline \text { 168A_D2_b } & 0.158 & 0.014 & 0.178 & 0.012 & 3.9 & 0.054 & 0.36 & 0.0012 \\ \hline \text { 168A_D2_c } & 0.391 & 0.008 \\ 2\end{array}\right) 0.376 \begin{array}{l}0.007 \\ 1\end{array}\right)$

898A_B1_b	0.75	0.01	0.82	$\begin{array}{\|l} \hline 0.006 \\ 1 \\ \hline \end{array}$	Below LOD	0.051	1.29	0.0006
898A_B1_c	0.211	0.012	0.27	$\begin{aligned} & \hline 0.007 \\ & 6 \end{aligned}$	Below LOD	0.064	1.49	$\begin{aligned} & 0.0007 \\ & 5 \end{aligned}$
898A_B1_d	0.119	$\begin{aligned} & \hline 0.005 \\ & 8 \\ & \hline \end{aligned}$	0.12	$\begin{aligned} & 0.003 \\ & 5 \end{aligned}$	0.039	0.03	0.272	$\begin{aligned} & 0.0003 \\ & 5 \end{aligned}$
898A_B2_a	0.47	0.005	0.59	0.008	0.035	0.031	2.4	$\begin{aligned} & 0.0004 \\ & 8 \end{aligned}$
898A_B2_b	$\begin{aligned} & \hline 0.028 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & 8 \end{aligned}$	$\begin{aligned} & 0.020 \\ & 8 \end{aligned}$	NaN	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.026	0.236	$\begin{aligned} & 0.0002 \\ & 5 \end{aligned}$
164B_A1_a	0.64	0.066	0.72	NaN	Below LOD	0.32	0.23	0.0066
164B _A1_b	0.49	0.079	0.41	NaN	Below LOD	0.38	0.063	0.0078
164B _A1_c	8	0.056	4.6	NaN	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.27	0.115	0.0056
164B _A1_d	1.35	NaN	0.96	0.12	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.47	0.52	0.0045
164B _A1_e	0.48	NaN	0.43	0.1	Below LOD	0.38	0.199	0.0036
164B _A2_a	0.5	NaN	0.52	0.08	Below LOD	0.31	0.065	0.0029
164B _A2_b	0.38	NaN	0.41	0.1	Below LOD	0.39	0.027	0.0037
164B _A2_c	1.05	0.064	0.88	0.054	Below LOD	0.29	0.34	0.0044
164B _A2_d	0.61	0.069	0.56	0.058	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.31	0.118	0.0048
164B _A3_a	0.371	0.047	0.408	0.039	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.21	0.044	0.0032
164B _A3_b	0.47	0.057	0.24	0.058	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.28	0.067	0.0054
164B _A3_c	0.38	0.039	0.227	0.04	Below LOD	0.19	0.105	0.0037
164B _A4_a	0.27	0.042	0.192	0.043	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.21	0.0426	0.004
164B_A4_b	0.137	0.06	0.218	0.043	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.19	0.0317	0.003
164B _B1_a	0.33	0.22	0.37	0.16	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.69	0.098	0.011
164B _B1_b	Below LOD	0.29	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.21	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.93	0.031	0.015
164B _B1_c	0.29	0.12	0.203	0.087	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.58	0.072	0.0082
164B _B2_a	0.33	0.12	0.37	0.087	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.58	0.038	0.0082

$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline \text { 164B_B2_b } & 0.34 & 0.13 & 0.41 & 0.094 & \begin{array}{l}\text { Below } \\ \text { LOD }\end{array} & 0.63 & 0.051 & 0.0089 \\ \hline \text { 886B_F } & 0.101 & 0.009 \\ 8\end{array}\right)$

154_B1_c	0.35	0.029	0.25	0.028	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.1	0.148	0.0017
154_B1_d	Below LOD	0.035	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.034	Below LOD	0.13	0.022	0.0021
154_B2_a	0.093	0.047	0.091	0.032	Below LOD	0.12	0.044	0.0014
154_B2_b	0.071	0.04	0.102	0.028	Below LOD	0.11	0.063	0.0012
154_B2_c	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.06	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.042	Below LOD	0.16	0.0025	0.0018
154_B3_a	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.017	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.023	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.1	0.0049	0.0015
154_B3_b	Below LOD	0.015	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.021	Below LOD	0.091	0.0154	0.0013
154_B3_c	0.025	0.015	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.02	Below LOD	0.09	0.0027	0.0013
154_B3_d	0.029	0.011	0.11	0.015	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.066	0.135	$\begin{aligned} & 0.0009 \\ & 5 \end{aligned}$
154_B4_a	Below LOD	$\begin{aligned} & \hline 0.009 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.013	Below LOD	0.064	$\begin{array}{\|l\|} \hline 0.0009 \\ 4 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0.0007 \\ 8 \\ \hline \end{array}$
154_B4_b	0.123	0.014	0.022	0.019	Below LOD	0.092	0.104	0.0011
154_B4_c	0.116	0.01	0.2	0.015	Below LOD	0.069	0.197	$\begin{aligned} & 0.0008 \\ & 5 \end{aligned}$
154_B5_a	Below LOD	0.011	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.015	Below LOD	0.07	0.0025	$\begin{aligned} & \hline 0.0008 \\ & 7 \\ & \hline \end{aligned}$
154_B5_b	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.013	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.018	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.087	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.0011
154_B5_c	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.012	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.017	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.082	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.001
900_E1_a	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.05	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.051	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.41	0.114	0.007
900_E1_b	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.031	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.031	Below LOD	0.25	$\begin{aligned} & \hline \begin{array}{l} \text { Below } \\ \text { LOD } \\ \hline \end{array} .8 \text {. } \\ & \hline \end{aligned}$	0.0043
900_E1_c	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.024	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.024	$\begin{aligned} & \text { Below } \\ & \text { LOD } \\ & \hline \end{aligned}$	0.2	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.0033
900_E1_d	Below LOD	0.033	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.034	Below LOD	0.27	Below LOD	0.0046
900_E1_e	Below LOD	0.025	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.026	Below LOD	0.21	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.0035
900_E1_f	Below LOD	0.056	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.065	Below LOD	0.22	Below LOD	0.0058
900_E1_g	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.065	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.076	$\begin{aligned} & \hline \text { Below } \\ & \text { LOD } \end{aligned}$	0.26	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \end{array}$	0.0067
900_E1_h	$\begin{array}{\|l\|} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.037	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.043	$\begin{array}{\|l} \hline \text { Below } \\ \text { LOD } \\ \hline \end{array}$	0.15	$\begin{aligned} & \text { Below } \\ & \text { LOD } \end{aligned}$	0.0038

900_E2_a	Below LOD	0.036	Below LOD	0.042	Below LOD	0.15	Below LOD	0.0038
900_E2_b	Below LOD	0.044	Below LOD	0.051	Below LOD	0.18	Below LOD	0.0046
900_E2_c	Below LOD	0.097	Below LOD	0.041	Below LOD	0.26	Below LOD	0.0039
900_E2_d	Below LOD	0.063	Below LOD	0.027	Below LOD	0.17	Below LOD	0.0026
900_E2_e	Below LOD	0.096	Below LOD	0.041	Below LOD	0.26	Below LOD	0.0039
900_F1_a	Below LOD	0.052	0.029	0.022	Below LOD	0.14	Below LOD	0.0021
900_F1_b	0.39	0.064	0.38	NaN	Below LOD	0.22	1.41	0.0039
900_F2_a	Below LOD	0.03	0.002 8	NaN	Below LOD	0.11	Below LOD	0.0019
900_F2_b	Below LOD	0.028	0.016	NaN	Below LOD	0.097	Below LOD	0.0017
900_F2_c	Below LOD	0.026	Below LOD	0.018	Below LOD	0.12	0.13	0.0015
159_A1	1.05	0.05	1.03	0.035	Below LOD	0.22	0.076	0.0029
159_A2	0.98	NaN	1.11	0.058	Below LOD	0.18	0.36	0.0025
159_A3	1.48	0.051	1.36	NaN	Below LOD	0.19	0.39	0.0035
$159 _B 1$	0.94	0.027	0.9	0.051	Below LOD	0.19	0.155	0.0019
$159 _B 2$	1.24	0.041	1.28	NaN	Below LOD	0.19	2.2	0.0032

Appendix H: Pyrite Saturation Calculation

H. 1 Convert formula for Reich et al. (2005) from mole percent to ppm

$\mathrm{C}_{\text {As }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{Au}} \\ & \left(\mathrm{C}_{\mathrm{Au}}=\right. \\ & 0.02^{*} \mathrm{C}_{\mathrm{AS}} \\ & \left.+4 \times 10^{-5}\right) \end{aligned}$	C_{Fe}	Cs	wt (g) As ($C_{A s} x$ molecul ar weight As)	wt (g) Au (CAux molec ular weigh t Au)	wt (g) Fe ($\mathrm{C}_{\mathrm{Fe}} \mathrm{X}$ molec ular weight Fe)	wt (g) $S\left(C_{S} x\right.$ molec ular weigh t S,	ppm As ($\mathrm{Wt}_{\mathrm{As}} /$ (Wtas + $\mathrm{Wt}_{\mathrm{Au}}+$ Wt $\mathrm{Fe}_{\mathrm{f}}+$ Wts)) *100*1 0000	ppm Au ($\mathrm{Wt}_{\mathrm{Au}}$ / (Wt $\mathrm{WA}_{\mathrm{As}}+$ $\mathrm{Wt}_{\mathrm{Au}}+$ $\mathrm{Wt}_{\mathrm{Fe}}+$ Wts)) *100*1 0000
$\begin{aligned} & 1.00 \mathrm{E}- \\ & 07 \end{aligned}$	$\begin{aligned} & 0.00004 \\ & 0002 \end{aligned}$	$\begin{aligned} & 33 . \\ & 33 \end{aligned}$	$\begin{aligned} & \hline 66 . \\ & 667 \end{aligned}$	$\begin{aligned} & \hline 7.49216 \\ & \mathrm{E}-06 \end{aligned}$	$\begin{aligned} & \hline 0.007 \\ & 879 \end{aligned}$	$\begin{aligned} & \hline 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & \hline 2137 . \\ & 744 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0.0018 \\ 73 \\ \hline \end{array}$	$\begin{aligned} & 1.97 E+ \\ & 00 \end{aligned}$
$\begin{aligned} & 1.00 \mathrm{E}- \\ & 06 \end{aligned}$	$\begin{aligned} & 0.00004 \\ & 002 \end{aligned}$	$\begin{aligned} & 33 . \\ & 33 \end{aligned}$	$\begin{aligned} & 66 . \\ & 667 \\ & \hline \end{aligned}$	$\begin{array}{l\|} \hline 7.49216 \\ \mathrm{E}-05 \\ \hline \end{array}$	$\begin{aligned} & 0.007 \\ & 883 \end{aligned}$	$\begin{aligned} & 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2137 . \\ & 744 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0.0187 \\ 35 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 1.97 \mathrm{E}+ \\ 00 \\ \hline \end{array}$
$\begin{aligned} & 0.000 \\ & 0005 \end{aligned}$	$\begin{aligned} & 0.00004 \\ & 001 \end{aligned}$	$\begin{aligned} & 33 . \\ & 33 \end{aligned}$	$\begin{aligned} & \hline 66 . \\ & 667 \end{aligned}$	$\begin{aligned} & \hline 3.74608 \\ & \mathrm{E}-05 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.007 \\ & 881 \end{aligned}$	$\begin{aligned} & 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2137 . \\ & 744 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0.0093 \\ 67 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 1.97 \mathrm{E}+ \\ 00 \\ \hline \end{array}$
$\begin{aligned} & 0.000 \\ & 005 \end{aligned}$	$\begin{aligned} & 0.00004 \\ & 01 \end{aligned}$	$\begin{aligned} & 33 . \\ & 33 \end{aligned}$	$\begin{aligned} & 66 . \\ & 667 \end{aligned}$	$\begin{aligned} & 0.00037 \\ & 4608 \end{aligned}$	$\begin{aligned} & \hline 0.007 \\ & 898 \end{aligned}$	$\begin{aligned} & \hline 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2137 . \\ & 7439 \end{aligned}$	$\begin{array}{\|l} \hline 0.0936 \\ 74 \\ \hline \end{array}$	$\begin{aligned} & 1.98 \mathrm{E}+ \\ & 00 \end{aligned}$
$\begin{aligned} & 0.000 \\ & 01 \end{aligned}$	$\begin{aligned} & 0.00004 \\ & 02 \end{aligned}$	$\begin{aligned} & 33 . \\ & 33 \end{aligned}$	$\begin{aligned} & \hline 66 . \\ & 667 \end{aligned}$	$\begin{aligned} & \hline 0.00074 \\ & 9216 \end{aligned}$	$\begin{aligned} & \hline 0.007 \\ & 918 \end{aligned}$	$\begin{aligned} & 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2137 . \\ & 7437 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0.1873 \\ 48 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.98 \mathrm{E}+ \\ & 00 \\ & \hline \end{aligned}$
$\begin{aligned} & 0.000 \\ & 01 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.00004 \\ 02 \\ \hline \end{array}$	$\begin{aligned} & 33 . \\ & 33 \end{aligned}$	$\begin{aligned} & 66 . \\ & 667 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.00074 \\ & 9216 \end{aligned}$	$\begin{aligned} & \hline 0.007 \\ & 918 \end{aligned}$	$\begin{aligned} & 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2137 . \\ & 7437 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0.1873 \\ 48 \\ \hline \end{array}$	$\begin{aligned} & 1.98 \mathrm{E}+ \\ & 00 \end{aligned}$
$\begin{aligned} & 0.000 \\ & 05 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.00004 \\ 1 \end{array}$	$\begin{aligned} & 33 . \\ & 33 \end{aligned}$	$\begin{aligned} & 66 . \\ & 667 \end{aligned}$	$\begin{aligned} & 0.00374 \\ & 608 \end{aligned}$	$\begin{aligned} & \hline 0.008 \\ & 076 \end{aligned}$	$\begin{aligned} & \hline 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2137 . \\ & 7424 \end{aligned}$	$\begin{aligned} & 0.9367 \\ & 38 \end{aligned}$	$\begin{aligned} & \hline 2.02 \mathrm{E}+ \\ & 00 \\ & \hline \end{aligned}$
$\begin{aligned} & 0.000 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.00004 \\ & 2 \end{aligned}$	$\begin{aligned} & 33 . \\ & 33 \end{aligned}$	$\begin{aligned} & 66 . \\ & 667 \\ & \hline \end{aligned}$	$\begin{array}{l\|} \hline 0.00749 \\ 216 \\ \hline \end{array}$	$\begin{aligned} & 0.008 \\ & 273 \end{aligned}$	$\begin{aligned} & 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2137 . \\ & 7408 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 1.8734 \\ 75 \\ \hline \end{array}$	$\begin{aligned} & 2.07 \mathrm{E}+ \\ & 00 \end{aligned}$
0.001	0.00006	$\begin{aligned} & 33 . \\ & 33 \end{aligned}$	$\begin{aligned} & \hline 66 . \\ & 666 \end{aligned}$	$\begin{aligned} & \hline 0.07492 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline 0.011 \\ & 818 \end{aligned}$	$\begin{aligned} & \hline 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2137 . \\ & 712 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 18.734 \\ 56 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 2.96 \mathrm{E}+ \\ 00 \\ \hline \end{array}$
0.01	0.00024	$\begin{aligned} & 33 . \\ & 33 \end{aligned}$	$\begin{aligned} & \hline 66 . \\ & 657 \end{aligned}$	$\begin{aligned} & \hline 0.74921 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.047 \\ & 272 \end{aligned}$	$\begin{aligned} & \hline 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2137 . \\ & 4234 \end{aligned}$	$\begin{aligned} & 187.32 \\ & 58 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.18 \mathrm{E}+ \\ & 01 \\ & \hline \end{aligned}$
0.1	0.00204	$\begin{aligned} & 33 . \\ & 33 \end{aligned}$	$\begin{aligned} & \hline 66 . \\ & 567 \\ & \hline \end{aligned}$	7.49216	$\begin{aligned} & \hline 0.401 \\ & 812 \end{aligned}$	$\begin{aligned} & \hline 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2134 . \\ & 5374 \end{aligned}$	$\begin{array}{\|l} \hline 1871.2 \\ 88 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 1.00 \mathrm{E}+ \\ 02 \\ \hline \end{array}$
1	0.02004	$\begin{aligned} & 33 . \\ & 33 \end{aligned}$	$\begin{aligned} & 65 . \\ & 667 \\ & \hline \end{aligned}$	74.9216	$\begin{aligned} & \hline 3.947 \\ & 21 \\ & \hline \end{aligned}$	$\begin{aligned} & 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2105 . \\ & 678 \end{aligned}$	$\begin{aligned} & 18518 . \\ & 09 \end{aligned}$	$\begin{aligned} & \hline 9.76 \mathrm{E}+ \\ & 02 \\ & \hline \end{aligned}$
10	0.20004	$\begin{aligned} & 33 . \\ & 33 \end{aligned}$	$\begin{aligned} & \hline 56 . \\ & 667 \end{aligned}$	749.216	$\begin{aligned} & \hline 39.40 \\ & 119 \end{aligned}$	$\begin{aligned} & \hline 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 1817 . \\ & 084 \\ & \hline \end{aligned}$	$\begin{aligned} & 167721 \\ & .8 \end{aligned}$	$\begin{aligned} & \hline 8.82 \mathrm{E}+ \\ & 03 \end{aligned}$

\(\left.$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}\hline 33 & 0.66004 & 33 . & \begin{array}{l}33 . \\
63 \\
667\end{array} & 2472.41 & \begin{array}{l}130.0 \\
28\end{array} & \begin{array}{l}1861.3 \\
058\end{array} & \begin{array}{l}1079 .\end{array}
$$ \& 446018 \& 2.35 \mathrm{E}+

566\end{array}\right] .3\)| 04 |
| :--- |

H. 2 Convert formula for Deditius et al. (2014) from mole percent to ppm

$\mathrm{C}_{\text {As }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{Au}(} \\ & \mathrm{C}_{\mathrm{Au}}= \\ & 0.004^{*} \mathrm{C} \\ & \mathrm{As}^{+} \\ & \left.2 \times 10^{-7}\right) \end{aligned}$	C_{Fe}	Cs	wt (g) As ($\mathrm{C}_{\mathrm{As}} \mathrm{X}$ molecul ar weight As)	wt (g) Au ($\mathrm{C}_{\mathrm{Au}} \mathrm{X}$ molec ular weigh t Au)	wt (g) Fe ($\mathrm{C}_{\mathrm{Fe}} \mathrm{X}$ molec ular weight Fe)	wt (g) $S\left(C_{s} x\right.$ molec ular weigh tS	ppm As ($\mathrm{Wt}_{\mathrm{As}} /$ ($\mathrm{Wt}_{\mathrm{As}}+$ $\mathrm{Wt}_{\mathrm{Au}}+$ $\mathrm{Wt}_{\mathrm{Fe}}+$ Wts)) *100*1 0000	ppm Au ($\mathrm{Wt}_{\mathrm{Au}}$ / $\left(\mathrm{Wt}_{\mathrm{As}}+\right.$ $\mathrm{Wt}_{\mathrm{Au}}+$ $\mathrm{Wt}_{\mathrm{Fe}}+$ Wts)) *100*1 0000
$\begin{aligned} & 0.000 \\ & 0001 \end{aligned}$	$\begin{array}{\|l\|} \hline 2.004 \mathrm{E}- \\ 07 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 33 . \\ 33 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 66 . \\ \hline 667 \\ \hline \end{array}$	$\begin{aligned} & \hline 7.49216 \\ & \text { E-06 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.95 \mathrm{E} \\ & -05 \end{aligned}$	$\begin{aligned} & \hline 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2137 . \\ & 744 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.0018 \\ & 73 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.87 \mathrm{E}- \\ & 03 \end{aligned}$
$\begin{aligned} & 0.000 \\ & 0005 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.00000 \\ 0202 \end{array}$	$\begin{array}{\|l\|} \hline 33 . \\ 33 \end{array}$	$\begin{array}{\|l\|} \hline 66 . \\ \hline 667 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 3.74608 \\ \text { E-05 } \\ \hline \end{array}$	$\begin{aligned} & 3.98 \mathrm{E} \\ & -05 \end{aligned}$	$\begin{aligned} & 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2137 . \\ & 744 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0093 \\ & 67 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.95 \mathrm{E}- \\ & 03 \end{aligned}$
$\begin{aligned} & 0.000 \\ & 001 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.00000 \\ 0204 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 33 . \\ 33 \end{array}$	$\begin{array}{\|l\|} \hline 66 . \\ 667 \\ \hline \end{array}$	$\begin{aligned} & 7.49216 \\ & \text { E-05 } \\ & \hline \end{aligned}$	$\begin{aligned} & 4.02 \mathrm{E} \\ & \hline-05 \end{aligned}$	$\begin{aligned} & 1861.3 \\ & 1385 \\ & \hline \end{aligned}$	$\begin{aligned} & 2137 . \\ & 744 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0187 \\ & 35 \end{aligned}$	$\begin{aligned} & 1.00 \mathrm{E}- \\ & 02 \end{aligned}$
$\begin{aligned} & 0.000 \\ & 005 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.00000 \\ 022 \end{array}$	$\begin{array}{\|l\|} \hline 33 . \\ 33 \end{array}$	$\begin{aligned} & \hline 66 . \\ & 667 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.00037 \\ 4608 \end{array}$	$\begin{aligned} & \hline 4.33 \mathrm{E} \\ & -05 \end{aligned}$	$\begin{aligned} & 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2137 . \\ & 7439 \end{aligned}$	$\begin{aligned} & 0.0936 \\ & 74 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.08 \mathrm{E}- \\ & 02 \end{aligned}$
$\begin{aligned} & 0.000 \\ & 01 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.00000 \\ 024 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 33 . \\ 33 \end{array}$	$\begin{array}{\|l\|} \hline 66 . \\ 667 \\ \hline \end{array}$	$\begin{aligned} & 0.00074 \\ & 9216 \end{aligned}$	$\begin{aligned} & 4.73 \mathrm{E} \\ & -05 \end{aligned}$	$\begin{aligned} & 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2137 . \\ & 7437 \end{aligned}$	$\begin{aligned} & 0.1873 \\ & 48 \end{aligned}$	$\begin{aligned} & 1.18 \mathrm{E}- \\ & 02 \end{aligned}$
$\begin{aligned} & 0.000 \\ & 01 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.00000 \\ 024 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 33 . \\ 33 \end{array}$	$\begin{aligned} & \hline 66 . \\ & 667 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.00074 \\ 9216 \end{array}$	$\begin{aligned} & 4.73 \mathrm{E} \\ & -05 \end{aligned}$	$\begin{aligned} & 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2137 . \\ & 7437 \end{aligned}$	$\begin{aligned} & 0.1873 \\ & 48 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.18 \mathrm{E}- \\ & 02 \end{aligned}$
$\begin{aligned} & 0.000 \\ & 05 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.00000 \\ 04 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 33 . \\ 33 \end{array}$	$\begin{array}{\|l\|} \hline 66 . \\ 667 \\ \hline \end{array}$	$\begin{aligned} & 0.00374 \\ & 608 \end{aligned}$	$\begin{array}{\|l\|} \hline 7.88 \mathrm{E} \\ -05 \end{array}$	$\begin{aligned} & 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2137 . \\ & 7424 \end{aligned}$	$\begin{aligned} & 0.9367 \\ & 4 \end{aligned}$	$\begin{aligned} & 1.97 \mathrm{E}- \\ & 02 \end{aligned}$
$\begin{aligned} & 0.000 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.00000 \\ 06 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 33 . \\ 33 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 66 . \\ \hline 667 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.00749 \\ 216 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.000 \\ & 118 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2137 . \\ & 7408 \end{aligned}$	$\begin{aligned} & 1.8734 \\ & 79 \end{aligned}$	$\begin{aligned} & \hline 2.96 \mathrm{E}- \\ & 02 \end{aligned}$
0.001	$\begin{array}{\|l\|} \hline 0.00000 \\ 42 \\ \hline \end{array}$	$\begin{aligned} & 33 . \\ & 33 \end{aligned}$	$\begin{array}{\|l\|} \hline 66 . \\ 666 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.07492 \\ \hline 16 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.000 \\ 827 \end{array}$	$\begin{aligned} & 1861.3 \\ & 1385 \\ & \hline \end{aligned}$	$\begin{aligned} & 2137 . \\ & 712 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.734 \\ & 61 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 2.07 \mathrm{E}- \\ 01 \\ \hline \end{array}$
0.01	$\begin{array}{\|l\|} \hline 0.00004 \\ 02 \end{array}$	$\begin{array}{\|l\|} \hline 33 . \\ 33 \end{array}$	$\begin{aligned} & 66 . \\ & 657 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.74921 \\ & 6 \end{aligned}$	$\begin{aligned} & 0.007 \\ & 918 \\ & \hline \end{aligned}$	$\begin{aligned} & 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2137 . \\ & 4234 \end{aligned}$	$\begin{aligned} & 187.32 \\ & 77 \end{aligned}$	$\begin{aligned} & 1.98 \mathrm{E}+ \\ & 00 \end{aligned}$
0.1	$\begin{aligned} & 0.00040 \\ & 02 \end{aligned}$	$\begin{array}{\|l\|} \hline 33 . \\ 33 \end{array}$	$\begin{array}{\|l\|} \hline 66 . \\ 567 \\ \hline \end{array}$	7.49216	$\begin{array}{\|l\|} \hline 0.078 \\ 826 \\ \hline \end{array}$	$\begin{aligned} & \hline 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 2134 . \\ & 5374 \end{aligned}$	$\begin{aligned} & 1871.4 \\ & 39 \end{aligned}$	$\begin{aligned} & \hline 1.97 \mathrm{E}+ \\ & 01 \\ & \hline \end{aligned}$
1	$\begin{array}{\|l\|} \hline 0.00400 \\ 02 \\ \hline \end{array}$	$\begin{aligned} & 33 . \\ & 33 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 65 . \\ 667 \\ \hline \end{array}$	74.9216	$\begin{array}{\|l\|} \hline 0.787 \\ 906 \\ \hline \end{array}$	$\begin{aligned} & 1861.3 \\ & 1385 \\ & \hline \end{aligned}$	$\begin{aligned} & 2105 . \\ & 678 \\ & \hline \end{aligned}$	$\begin{aligned} & 18532 . \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.95 \mathrm{E}+ \\ & 02 \end{aligned}$
10	$\begin{array}{\|l\|} \hline 0.04000 \\ 02 \end{array}$	$\begin{array}{\|l\|} \hline 33 . \\ 33 \\ \hline \end{array}$	$\begin{aligned} & \hline 56 . \\ & 667 \\ & \hline \end{aligned}$	749.216	$\begin{array}{\|l\|} \hline 7.878 \\ 701 \\ \hline \end{array}$	$\begin{aligned} & 1861.3 \\ & 1385 \end{aligned}$	$\begin{aligned} & 1817 . \\ & 084 \\ & \hline \end{aligned}$	168913	$\begin{aligned} & \hline 1.78 \mathrm{E}+ \\ & 03 \end{aligned}$
33	$\begin{aligned} & 0.13200 \\ & 02 \end{aligned}$	$\begin{aligned} & 33 . \\ & 33 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 33 . \\ 667 \\ \hline \end{array}$	$\begin{aligned} & 2472.41 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 25.99 \\ & 962 \\ & \hline \end{aligned}$	$\begin{aligned} & 1861.3 \\ & 1385 \\ & \hline \end{aligned}$	$\begin{gathered} 1079 . \\ 566 \\ \hline \end{gathered}$	$\begin{aligned} & 454546 \\ & .8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.78 \mathrm{E}+ \\ & 03 \\ & \hline \end{aligned}$

[^0]: No anomalously high peaks, so no gold inclusions

[^1]: No anomalously high peaks, so no gold inclusions

