cmic-footprints.ca

POTSDAM

Exploration Footprint of the Highland Valley Porphyry Copper Deposit

- SEG 2018 Keystone - NSERC-CMIC Footprints Cu Site

Robert G. Lee – Mineral Deposit Research Unit – UBC Craig J.R. Hart – Mineral Deposit Research Unit – UBC Pete Hollings – Lakehead University Sarah A. Gleeson – GFZ Helmholtz Centre Potsdam Germany

Location of Cu Site

NSERC-CMIC

HVC is a calcalkaline porphyry copper deposit **located in South-Central British** Columbia hosted in the late Triassic **Guichon Creek** batholith

D'Angelo et al., 2017 (SEG)

Objectives CMIC Cu Site

Develop comprehensive and robust models of the footprints of large-scale ore-forming systems at the Highland Valley Copper deposit, combining geological, mineralogical, geochemical, and physical rock properties from the local to the camp scale

Develop novel methods for integrating and interrogating multiple data sets that will enhance the exploration process and, at the same time, answer fundamental questions about the origins of large-scale ore-forming systems

Identify the best combinations of geological, geophysical, petrophysical, mineralogical, and geochemical tools to detect the footprints of major ore-forming systems

Research Team

• Integrated expertise across multiple disciplines

Geologists

Guillaume Lesage – MDRU-UBC Kevin Byrne – Alberta Michael D'Angelo – Lakehead Darius Kamal – MDRU-UBC

Site Geologists

John Ryan – Teck Resources Limited Miguel Alfaro – Teck Resources Limited Hyperspectral

Philip Lypaczewski – Alberta Benoit Rivard – Alberta

Modeller

Julia King – Geoscience North Inversion Modelling Marc Vallée – Memorial University

Physical Properties

Christophe Grenon – Polytechnique Michel Chouteau - Polytechnique Randy Enkin – GSC Sydney B.C.

Geophysics

Reza Mir – University of Toronto William Morris – McMaster University

Surface soil/till:

Rachel Chouinard – MDRU-UBC Peter Winterburn – MDRU-UBC Andrea Reman – Waterloo Martin Ross – Waterloo Alain Plouffe – Geological Survey of Canada Travis Ferbey – B.C. Geological Survey

SERC

Legacy data GCB

- Concentrically zoned batholith 60 x 30 km
- Data distribution concentrated around mineralized deposits
- Limited assay type (metals, oxides, multi-element)
- Five known deposits: Valley, Lornex, Highmont, Bethlehem, J.A.
- Distal alteration features: Chlorite vs. sericite

Major rock units

Name	Gump Lake	Border	Guichon	Chataway	Bethlehem	Skeena	Bethsaida	Dykes
Rock Type	granodiorite Qtz monzonite	gabbro to Qtz diorite	granodiorite	granodiorite Qtz monzonite	granodiorite	granodiorite monzogranite	granodiorite monzogranite	FPM-QFP aplite
SiO ₂ %	68-72	48-56	63-68	63-68	64-66	65-73	68-75	60-78
TiO ₂ %	0.36-0.42	0.79-1.26	0.42-0.80	0.40-0.60	0.33-0.45	0.22-0.39	0.10-0.26	0.10-0.37
Mag Sus (SI	0.019- 0.032	0.026- 0.099	0.020- 0.050	0.019- 0.084	0.001- 0.036	0.018- 0.036	0.013- 0.036	0.001- 0.05
Age (M	a) 218.0±0.2	211.0±0.2	210.7±0.2	210.5±0.3	209.5±0.5	208.4±0.3	208.6±0.2	209-207
image		l cm	Nr.	l cm	A. S	cm	l e	n

Byrne et al., 2013 SEG fieldtrip guide; D'Angelo et al. 2017 SEG December issue; Lee et al., 2017 SGA

GCB & HVC

- New geologic and structure map of region from five+ transects
- 1:5000 & 1:10,000
- Over 1000 samples collected for project
- Field measurements
- Field mag sus
- Rock (soil/till/vegetation)

0

Work Flow – 1000 samples

NSERC-CMIC

Field Mapping

Outcrop limited by glacial and surface cover

Grid mapping Tablet/field book

Outcrop mag sus Orientations Sampling

Petrography - Integration

Petrography -> K-staining -> Spectral -> chemical composition

Lithochem -> petrophysical properties -> proxies for model

Data combined with field observations to define alteration maps

Whole Rock Lithochemistry MSERC-CMIC SCALE SCALE

Trace Element Chemistry

Elevated fluid content based on trace element composition

Mineral Chemistry

GCB Mineral

composition

show distinct

compositional

between rock

Minerals Analyzed:

chlorite

amphibole

white mica

tourmaline

carbonate

feldspar

prehnite

apatite

sulfides

zircon

type & alteration

differences

Chlorite - Kamal (2017)

Zircon - Lee et al. 2017 SGA; SEG submitted

Stable Isotopes

 $\delta^{13}C_{total}$ values and $\delta^{13}C_{carbonate}$ values from rock pulps. Also shown are the common C isotope reservoirs.

 $\delta S^{34} \%$ Magmatic values in core of GCB and HVC deposit fractionated to higher values in distal showings

2 3

0

5 6

4

8 9

14

12

10

8

6

4

2

0

-5 -4 -3 -2 -1

n = 61

Lee, 2017

Mo

Ccp

🗖 Bn

Pv

10 14 15

Alteration Assemblage Map NSERC-CMIC STA

- New alteration map defining fluid pathways and footprint vectors
- Distribution of mapping and sampling extends ~30km east-west and ~20km northsouth Structural bound

Alteration mineral assemblage

Fracture-controlled Ms-Qz+-Ccp+-Bn Fracture-controlled Kfs+-bt+-Qtz+-Ccp+-Bn

Pervasive Ab-Chl-Act+-Grt+-Di

Fracture-controlled Ab-Chl-Ep

Fracture-controlled WM-ChI-Prh

Palinspastic Reconstruction

Kfs zone centered on main HVC deposits 12 km x 2 km

5 km

Na-Ca - long and narrow structural control 20 km NE-SW x 17 km NW-SE

5 km

Coarse Ms vein orientations similar to district showing mineralized trends NE- and NW-trending

WM-ChI-Prh high intensity over main HVC deposits continuous zone > 10 km

5 km

NM-Chl

Surficial Work

- Soil sampling over J.A. and Highmont South targets
- Core logging and sampling of cover material from J.A. and Valley drill holes
- Evaluation of detrital mineral chemistry from joint BCGS/GSC collaboration

Soil Profile - Example

Soil Mo

Legend

----- Fault

Mineralization outline

Till blanket

Waterlogged till blanket

Hummocky till

- Waterlogged depositional clay
- Waste rock

- Background
- Excluded waterlogged sample

Avg. depth to bedrock 5m

Chouinard, 2018

Soil Profile - Example

-180 mesh, aqua regia, ICP-MS

pine needle, aqua regia, ICP-MS

Chouinard, 2018

Soil Profile - Example

-180 mesh, aqua regia, ICP-MS

pine needle, aqua regia, ICP-MS

AGI Sampler, TD-GC/MS

Till – Mineral Composition **NSERC-CMIC** FOOTPRINTS

Geophysics

Geophysical compilations of legacy and recent IP, gravity, and magnetic data

Lesage et al. Structural control of GCB

Geophysics Correlating Alteration

Ab-Chl-Ep±Act veins

Magmatic fluid pressure wanes following early Kfs±Bt±Qz±Ccp±Bn veins

External fluids brought into the system

Lesage et al. in prep

Good match between vein orientations and syn-" mineralization faults Fracture-controlled Albite-Chlorite-Epidote is associated with consistent decrease in resistivity at depth (< 500 Ωm).

Petrophysical properties

- **Magnetic susceptibility**
- **Tie between geophysics and bedrock**
- Sample density and sample type dependent

NSERC-CMIC

Vallée et al. 2017 SEG Houston '17

3D Common Earth Model

- GOCAD® and INTEGRATOR® models
- Constrained surfaces and structures
- All mapped orientations, sections, stations
- Database with chemistry, petrophysical properties, spectral
- Block model interpretations

Summary

- Alteration assemblage
 - high temperature: Ksp, Qtz, Bio, Mus in core;
 - low temp sodic/propylitic distal: Alb, Ep, Chl, WM, Prh, Tur
- Normalized lithochemical concentration increase from margin to core Cu, Ag, Mo
- Isotopic change S, C, O
- Mineral chemistry change in Chlorite, Zircon, White Mica, Epidote

Summary

- Mineral first approach to mapping Assemblages define distal vs proximal (regional) alteration; K vs Na-Ca vs Prop
- Distal alteration mineral assemblage extend up to 12 km
- Spectral imaging and feldspar staining can identify subtle features not observable in the field
- Shallow surface response evident (soil/till)
- Models constrained by integrating petrophysical properties with geophysical surveys

Old IP/gravity/magnetic surveys still valuable

