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Assembling Machine Learning
Workflows to Assist Mineral
Exploration
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® Role and purpose of ® Machine learning
machine learning in accelerates the pace of
modern society? AUTOMATION reducing
® Foreseeable impact human labor.
that ML methodologies ® It’s a general purpose
can lead to? technology like the

invention of the steam

® Machine learning to i ..
engine or electricity.

automate the

recognition of specific ® Offers better decisions if
geological processes? compared to discipline
experts.

® Increased Usability.

canadamining _ Feltrin — SEG 2018 Keystone — Mineral Exploration Footprints Project CRSNG



The challenge of automation NSERC-cmIC UK

The problem of natural complexity 5

Snowflakes “Emergence”

Flakes 2000 — the computational beauty of nature

canadamining _ Feltrin — SEG 2018 Keystone — Mineral Exploration Footprints Project CRSNG
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Development of new breeds of more
Is necessary to achieve a
more advanced level of automation.

Example: training simple neural network
architectures is a superseded paradigm. Trend
to more complex and specialized networks
(e.g. Deep Learning).

can
be pipelined to organize and drive automation.

Complex systems are required to obtain more
automations of automation paradigms and
increase the applicability of ML technology
leading to



Automation requires adaptable &
interactive workflows

© One powerful algorithm is insufficient. More
complex architectures accommodating the
input variability and processing needs are
becoming a standard in geoscience
[automation of the automation concept].

© Example of complex but relatively successful
workflow (see Holtzman et al., 2018, Sci.
Adv.)

A . B
‘i N A 7 s Fracture Shear
§ k’ 7 mechanisms
& 4 ¥/ in geothermal
W } reservoirs
[
|

A" ML method:

' _“ IE-I I g
Non negative matrix Hidden Markov Frequency/temporal

Seismic signals }—> (in d h ] ) factorization (NMF) model (HMM) "fingerprints"

B NMF:

S])(‘(‘lr()gr.’lm F (size D x M)
|

Frrqumu"y

Activation coefficient

Dicti P 1 matrix diag(a)l
Time ictionary of spectra (size Kx M)

patterns (size D x k)
¢ HMM:

Emissions matrix, B

State sequence
as indicator matrix

States, T

P K-means clustering:
Distance minimization

Euclidean for J clusters:
distances:

»n/l L, mgE B
! L= I

Next state Cl Centroids

Fingerprint, A

Past state



Automation may lead to a relatively “blind” approach reducing
the capacity of the scientist to derive insight from the results
and understand the machine reasoning and decisions

Today [ Task
X « Why did you do that?
. Decision or % * Why not something else?
Training N [A aCh',ne " Learned Recommendation ' g * When do you succeed?
Data eaming Function * Whendo you fail?
Process - « Whencan | trust you?
* How do | correct an error?
User
XAl : Task
* « 1 understand why
New « 1 understand why not
Training Machine N Explainable | Explanation « | know when you succeed
Data Learning Model Interface * | know when you fail
Process * | know when to trust you
* | know why you emred
User

Advanced Data
Visualization
Solutions

Explainable Artificial Intelligence (XAl) Gunning (2017) DARPA

& canada )
- council
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If an increased complexity of workflows allows more powerful
applications, then advancement should consider this type of approaches
also in a mineral exploration application

FOOTPRINT RECOGNITION MACHINE

Data Fusion

????? Multidisciplinary Data Sets

Modality Definition = Classmcatlon Supervised Learning Data Visualization

Integration O_‘-

Combine Geological
Data (3D/2D)

2Transparency (XAl)

1 Classifier Fusion INTEGRATION OF

Flexible - UNSUPERVISED
pecision | (sov) (JRNEE®D |Ensemble AND SUPERVISED

Engine Generation LEARNING
METHODS

Unsupervised Learning

® Our proposed model attempted this operation by looking at constructing

a data pipeline that uses a variety of algorithms to solve specialized tasks ® NSERC

canada CRSNG
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Research Problem: Geospatial
Footprint Segmentation (Zone
Attribution)
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Progress domains in cluster analysis

Areas with most Areas with significant
significant progress progress

Wu et al. (2013),
Viks et al., Exp. Sys.
(2003), Bioinf.

Berthold et al. (2010),

Datta and Datta (2006), Springer
BMC Bioinf.

NEW

BIG DATA ALGORITHMS e
Kurasova et al. (2014), Rathipriya (2016)
ICTAI, IEEE IEEE Expl.

Develop flexible architectures that can accommodate for rapid

Narmadha and

changes in the clustering arena

canadamining _ Feltrin — SEG 2018 Keystone — Mineral Exploration Footprints Project CRSNG



The problem of optimization:
shape of the clusters non-homogeneous, non-separated

@ Labelling of different cluster shapes. Each algorithm is good at classifying specific
topologies

canada

Mixed cluster shapes Correct classification

~ Density Based
|
\

Rty e .
Pt S I~
P e e

i O

(a) Input data (b) Desired clustering

Types of clusters with different morphology in bi-
variate space. It is very difficult to obtain the
classification reported in (b) with a single
clustering algorithm. Visualization is critical.

Jain, 2008, ICPR

council
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Cluster analysis iterative workflow P JES

Stages in cluster analysis & flexibility in terms of parametrization

Patterns | _Feature
_ _|Selection/

Extraction Representations

! f |

Cluster Validation feedvackloop  Visualization

Pattern Interpattern

Similarity Grouping Clusters

Modified from Jain et al., 1999, ACM

+ Feedback loop allows the generation of multiple clustering outputs
(useful for comparative purpose)
« Validation can be used to rank the quality of each clustering output
« Common changes involve either the clustering algorithm or its parameters:

* (1) A transformed (different) input data set

* (2) A different similarity metric (Euclidean, Manhattan, Minkowski, etc.)

+ (3) A different clustering algorithm (K-Means, K-Medoids, Model Based, etc.)

NSERC

canada Feltrin — SEG 2018 Keystone — Mineral Exploration Footprints Project CRSNG
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Malartic Au deposit, Quebec (p-xrf) footprint

Coupling statistical visualization with external domain knowledge
pXRF Sample IDs

Cluster 3

= 1

Cluster6 |
Wl

- N W s O,

(=2

Cluster 1 Cluster 2

Cluster 4
o1

e .
2" & i., -'
@’»c, s

MWM ‘/ﬂlv‘ﬁ,

[8  Pyrite
4 (%)

Ly

) '|l!;E

Feltrin et al. (2016)
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Fe
Rb
Ba
Sr

portable ED-XRF Data

Approximate
Distance

to Malartic
Core (km)
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DAC; Lesher et al. (2017), DMEC
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K-Means groups — Beri Lyl W
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1 ® Oust
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® K-Means clustering of selected data was W e

1550 1650 1500 18000

carried out to define semi-automatically 3 ,;@,d“ Qlrrt ol "l& ol =
discrete zone boundaries. —

® K-Means cluster analysis was used on R N e (-
3 el Ve s ol S 3ts !“' . i . s

distinct lithological sub-categories to limit NI M Ak A

the effect of lithology on the results of :; S T e
cluster analysis. T T e ¥
® 5 Zones were identified by comparing SRR 5

.o, oo N
o _op . HY

o b 18y &j N

R :

boundaries defined in each sub-unit.
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00
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Feltrin et al. 2016, GEOSTATS e s w e o0
prc (Log Distance to Core — metres)
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K-Means groups — HVC deposit

Comparison of classifiers with
different K=[3,6,9]. The ternary
classification is the easiest to
interpret and shows
differences in the sub-clusters
at the 100-250 m scale (SOM
vs K-Means). Zones show
minimal population mixing in
the ternary clustering.
Generalization is similar for

the two classifiers in this case.

An increase of K causes a
reduction of the number of
samples per cluster reducing
the classification performance
even if 5 fold cross-validation
was used.

canada )
- council
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Classifier 2D mapping -

Although it is relatively easy
to conduct a classification
with modern analytics
software, one outstanding
problem is the variability of
classifier performance, which
is internally dependent on
the classification algorithm
selected to accomplish a
discretization and also
externally dependent on the
input data supplied to the
algorithm (free lunch
theorem).

canada )
- council
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Expectation Maximization

Self Organizing Map

Which one is right?
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Malartic Au deposit

YY)
.
L ST A

P,

K-Medoids

® Visualization of
classification results as
2D GIS Map.

® Results show some of the
problems encountered:
mainly heterogeneous
cluster size and labelling.

® A certain level of
agreement is also
observed (despite
labelling).
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Solution filtering NSERC-cmIc UL

® Classifier Integration was implemented to mitigate classifier dependence.

® Effect of filtering of samples using combined scoring of sureness and agreement weight (not
meeting the 50% majority vote). Samples colored using the SOM classifier.

NohALNAO

o
\ i 2 Malartic —
NPV o .L. Malartic L ® K\—/
* .8 O < e o B
° 8° )y '
g O ' >
¢ ‘g o)
' e e < t )
®
& ®
{ J
PS Four PS
»° ®
ep o
© Overall outlier reduction process o
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Research Problem: Zone
Investigation Applying Data Mining
with Advanced Machine Learning
Tools

Supervised Learning

%a,. “%; f@‘




T
— AN

Supervised learning NSERC-CMIC 3K

® Understanding what is controlling the clustering provides support for the interpretation of the results
and represents a key aspect of footprint recognition.

® To accomplish this task we used Data Mining to define the characteristics that typify each group/class.

® Hypercube a French software with a history in solving healthcare related problems (Loucoubar 2012)
was applied to test the formulated hypothesis that association rule learning can be a fruitful solution to
more explicitly expose characteristics that determined the clustering observed. DISTINCTIVE

An HC rule in low-

dimensional space can be
Generate Rules by Build-up Rules Set by Test and optimize model changes its size to fit a
exploring data set selecting relevant rules performance modality, the degree of fit

represents its purity
Set Target : purity, size, Set Greedy algo Back-testing and Iteratively
complexity... parameters : lift, coverage, increase complexity until
and potential constraints : ZSCOrE... convergence
variables, KPls...

BearingPoint [P
earingPoin X o
O (0] x ©) [
Rule Size can vary e} O Barren I

X x

Complexity

n-dimension




Zone
investigation
using
association rule
mining
Inference
concerning

mineralogy is
possible

.
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Basement Zone 1 - Uranium Rules
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Basement Zone 5 - Uranium Rules ° o ° L - (b)
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Geochemical: 206/204Pb, Rb, Na, Ba, Eu, Sm, U, Al, Be, As, Zn, Hf, 208/204Pb, Th, Sr, Ce, Nd, Pr, La, Ta
‘ Geophysical: ppR, RQD
Geochemical: Yb, U, HREE, U/Pb, Ni, Y, Fe, HREE/LREE, 207/204Pb, Cu, Zn, Mo, Ho, Mn, Be
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Concluding remarks NSERc-cmic = UK

® We provided a series of snapshots of how our machine learning workflow
operates that emphasize its organic and transparent nature.

® We demonstrated plausible ways of increasing the embedding of domain
knowledge to improve solution optimization and showed how interpretations
can be carried out efficiently using association rule learning to expose
mineralogical transitions from the center to the periphery of an ore system.

® Mining companies need to make best use of their data. The experience

suggests that obtaining quantitative representations that are visual and
automate classification is essential to improve our use of information for
mineral discovery.

) . canada : Feltrin — SEG 2018 Keystone — Mineral Exploration Footprints Project CRSNG
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