

CM Lesher, Laurentian University MD Hannington, University of Ottawa AG Galley, CMIC and Malleus Consulting and the NSERC-CMIC Mineral Exploration Research Network

tawa

Problems

- Volume of data: Surveys are being conducted faster than ever before, frequently exceeding the capacity to assemble and interpret them, leaving vast amounts of quantitative information unused
- Subjective data selection: Conventional methods of handling the data are no longer sufficient to extract their full value and expensive data are regularly dismissed on the basis of subjective evaluations
- Consistency: Lack of consistency in the quality and resolution of different data sets creates problems in comparing and integrating data
- Incomplete quantitative analysis: Most exploration models have typically not been populated with quantitative data for more than a few parameters or at the range of scales necessary for effective exploration
- Data interrogation/relationships: Even where data are abundant, they are often interrogated individually or without qualification that may emphasize their relationship to an economic deposit

Goals

- Enhance the ability of the Canadian mining industry to recognize the entire footprint of an ore deposit from its high-grade (minable) core to most distant cryptic margin
- Develop methods that truly integrate (not just layer) the wide range of complex geological-structural-lithological-mineralogical-geochemicalpetrophysical-geophysical data that define the footprint of an ore deposit
- Formalized methodologies for how specialists in each of those areas need to interact in order to accomplish these goals

Specific Objectives

- Develop comprehensive and robust models of the footprints of large- \odot scale ore-forming systems at three integrated study sites, combining geological, mineralogical, geochemical, geophysical, and physical rock properties from the local to the camp scale
- **Develop novel methods for integrating and interrogating multiple data** \odot sets that will enhance the exploration process and, at the same time, answer fundamental questions about the origins of large-scale ore-forming systems
- Identify the best combinations \odot of geological, geophysical, petrophysical, mineralogical, and geochemical tools to detect the footprints of major ore-forming systems

Research Network

30 Faculty Researchers at **24** Canadian Universities **80** HQP Trained

- **15** Research Scientists, **9** PhD Students, **16** MSc Students
- **6** BSc Hons Students, **17** BSc Lab Assistants, **17** BSc Field Assistants

33 Sponsors:

- 16 Mining and Mineral Exploration Companies: Agnico-Eagle (2014-2018), AngloGold Ashanti, Areva/Orano, Barrick, Cameco, Denison Mines, Franklin Geosciences, Gedex (2013-2014), Goldfields, HudBay, Iamgold, Japan-Canada Uranium (2013-2016), Kinross, Osisko (2013-2014), Teck, Yamana Gold (2014-2018)
- 4 Geochemical Service Companies: Actlabs, ALS, SGS, SRC
- 6 Geological and Geophysical Service Companies: Abitibi Geophysics, Fugro/CGG, DGI, PGW, Rekasa Rocks (2017), SRK
- 7 Software Service Companies: BearingPoint, Dassault Systèmes, Geosoft, MIRA Geoscience, Paradigm, Pitney-Bowes, Reflex

4 Collaborators: GSC TGI-4, MRNQ, SGS, GSBC

canadamining innovationcouncil

Research Methodologies

- New and legacy data, with emphasis on high-quality multi-parameter measurements on the same samples at each site
- 3D data constrained using multiparameter data from representative cross sections and surface/level plans through each ore system

Site/Technology Groups

 Same teams of researchers working on all three sites to ensure a uniform approach to defining the ore-system footprints

Lesher - SEG 2018 Keystone -

Common Focus of Subprojects

- Collate and integrate existing data sets
- Identify key sections to characterize the deposit footprint
- Select new analyses to fill critical gaps in multi-parameter data sets
- Identify unique combinations of parameters at the appropriate scales

canadamining

Common Data Integration Model

GOCAD/SKUA and MIRA Mining Suite used to provide a common framework for 2D/3D geology, physical properties, borehole logs, assay data, structural/geophysical/geochemical models, and inversions

Major Deliverables

- Fully integrated, multiparameter footprint models of three major types of ore systems in Canada and the workflows needed to creating them
- Maps and sections of the detectable features of the ore systems, including full geological, mineralogical, geochemical, petrophysical, geophysical, and derived attributes
- Database of physical rock properties linked to the mineralogical and geochemical attributes of ore-hosting lithologies and alteration
- Geophysical survey data reprocessed with new software and constrained by new geological information and physical property measurements specific to the ore system
- Modifications of existing tools or methods to enhance the measurement and detection of footprints at a range of scales

Footprints and Vectors Identified

- Au Site
 - 98 vectors (35 in metasedimentary rocks, 63 in mafic dikes)
 - 20 footprints (9 in metasedimentary rocks, 11 in mafic dikes)
 - 4 halos in Quaternary sediments
- U Site
 - 18 vectors and 7 footprints at Millennium
 - 14 vectors and footprints at McArthur River
 - Vary with stratigraphy, strongly controlled by structure
- Cu Site

canadamining innovationcouncil

Au Site Database and CEM

- 5 local (40 cm resolution) and 1 regional (90m resolution) DEMs
- Overburden thickness model and regional till map
- 161 historic mine sections, 6045 DDH logs, and 14 downhole petrophysical logs
- Regional geological model and 14 local outcrop geology maps
- 2322 structural measurements and 2888 regional mineral occurrences
- 2 airborne MAG and EM, 19 IP, and 3 satellite/ground gravity surveys
- 863 petrophysical and 1011 gamma-ray spectrometric measurements
- 4382 pXRF, 1103 WR lithogeochem, and 272 WR and mineral H-O-C-S isotope analyses
- 347 XRD mineralogy determinations
- **7539 WD-XRES** (EPMA) mineral analyses
- Hyperspectral data for 1639 samples and over 1000m of drill core
- Derivative products: stitched 1D inversions of AEM data for resistivity and susceptibility at different frequencies, forward magnetic models, inversions for IP resistivity and chargeability, and gridded geochemistry, mineralogy, petrophysics
- Supporting data: >2000 photographs, photomicrographs, backscattered electron SEM maps, hyperspectral mineral chemistry maps, WD-XRES EPMA and LA-ICP-MS elemental maps, and mineral liberation analytical maps

Au Site Footprint **Vectors I**

	Type/I	Litholo	gy/Phase/Property		Mineralized <0.1 km	Proximal 0.1 - 0.5 km	Medial 0.5 - 1 km	Distal 1 - 5 km	Least Altered > 5 km	Method / Instrument
		s	Anorthite	Presence				OUT	IN	Petrography
			Hornblende	Presence Proportion		OUT	IN			Petrography XRD
S/		dike	Biotite	Presence Proportion	~			IN	OUT	Petrography XRD
	s s	Metabasi c	Epidote (Allanite)	Presence Ca/(REE+Y) Al/(Mg+Fe) F/Cl	OUT	IN ∢		IN	OUT	Petrography EPMA (WD-XRES) EPMA (WD-XRES) EPMA (WD-XRES)
	ysic:	2	Calcite	Presence Proportion	~		IN	OUT		Petrography XRD / Petrography
	h d		Density					\rightarrow		Balance
	<u></u>		Iron carbonates	Presence	IN	OUT				Staining
	Pet	es	Fluoro-carbonates (Parisite)	Presence Proportion	~	IN	OUT			SEM SEM
	פ	gi	Ilmenite	Presence		OUT	IN			SEM
	ar	등	Rutile	W-Sb-Nb	←					EPMA (WD-XRES)
	ogy	Lith	Pyrite	Presence Proportion	∢		IN	OUT		Petrography SEM
	linera	All	Pyrrhotite (metamorphic)	Presence Proportion Ratio Po/Py	OUT	IN	∢···· →	IN	OUT	Petrography SEM / Petrophysics SEM
	2	ľ	Magnetic Suscept	ibility	-	\rightarrow	←			Susceptibility meter
			Albite	Presence	IN	OUT				Petrography
			Microcline	Presence	IN	OUT				Petrography / Staining
		ocks	Biotite (hydrothermal)	Wavelength Mg #		High Low	(metamorphic)			SWIR Imagery EPMA / SWIR Imagery
		tary I	Biotite (metamorphic)	Si-K-Ti-F Na-Al	~				····· >	EPMA EPMA
al		ment	White mica (hydrothermal)	Wavelength Al ^{vi}	<		Low	High		SWIR Imagery EPMA
t al. ation		etasedi	White mica (metamorphic)	Si-Fe-Mg-K-Ti Na-Al Wavelength	∢				·····>	EPMA EPMA SWIR Imagery
		ž	Calcite	Presence Proportion	∢	IN	OUT			Petrography XRD / Petrography
			Pyrite	Au-Te	<					ICP-MS

Perrouty e for Lesher 2017 Exp '17 Volum

canadamining innovationcouncil

Type/Lithology/Phase/Property			Mineralized <0.1 km	Proximal 0.1 - 0.5 km	Medial 0.5 - 1 km	Distal 1 - 5 km	Least Altered > 5 km	Method / Instrument	
		Anorthite	Presence				OUT	IN	Petrography
	SS	Hornblende	Presence Proportion		OUT	IN			Petrography XRD
	dike	Biotite	Presence Proportion	◀			IN	OUT	Petrography XRD
	Metabasic	Epidote (Allanite)	Presence Ca/(REE+Y) Al/(Mg+Fe) F/Cl	OUT	IN 		IN	OUT	Petrography EPMA (WD-XRES) EPMA (WD-XRES) EPMA (WD-XRES)
ysic		Calcite	Presence Proportion	◀		IN	OUT		Petrography XRD / Petrography
h d		Density					\rightarrow		Balance
0 2		Iron carbonates	Presence	IN	OUT				Staining
Peti	es	Fluoro-carbonates (Parisite)	Presence Proportion	4	IN	OUT			SEM SEM
ן אר) ogi	Ilmenite	Presence		OUT	IN			SEM
al	ĕ [Rutile	W-Sb-Nb	◀───					EPMA (WD-XRES)
ogy	Lith	Pyrite	Presence Proportion	~ ·····		IN	OUT		Petrography SEM
Aineral	AII	Pyrrhotite (metamorphic)	Presence Proportion Ratio Po/Py	OUT	IN >	∢·····	IN	OUT	Petrography SEM / Petrophysics SEM
2		Magnetic Suscept	bility	-	\rightarrow				Susceptibility meter

Type/Lit	Type/Lithology/Phase/Property			Mineralized <0.1 km	Proximal 0.1 - 0.5 km	Medial 0.5 - 1 km	Distal 1 - 5 km	Least Altered > 5 km	Method / Instrument
		Albite	Presence	IN	OUT				Petrography
	S	Microcline	Presence	IN	OUT				Petrography / Staining
	ж Г	Biotite	Wavelength		\rightarrow				SWIR Imagery
	õ	(hydrothermal)	Mg #		High Low	(metamorphic)			EPMA / SWIR Imagery
		Biotite	Si-K-Ti-F	◀	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	EPMA
	tar	(metamorphic)	Na-Al		• • • • • • • • • • • • • • • • • • • •		•••••	▶	EPMA
	eni	White mica	Wavelength	←					SWIR Imagery
	Ĕ	(hydrothermal)	Al			Low	High		EPMA
) jdi	White mica	Si-Fe-Mg-K-Ti	◀	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	EPMA
	IS6	(metamorphic)	Na-Al		•••••	••••••	•••••	≻	EPMA
	Calcite Wavelength Presence Proportion	Wavelength	◄					SWIR Imagery	
		Oplaite	Presence		IN	OUT			Petrography
		Calcite	Proportion	∢					XRD / Petrography
		Pyrite	Au-Te	←					ICP-MS

Perrouty et al. for Lesher et al. 2017 *Exploration* '17 *Volume*

U Site Database and CEM

- 50m-spaced DEM and overburden thickness map
- Basin and basement geology with fault traces
- Regional radiometrics; seismic
- 1 km-spaced ground gravity and gravity forward model
- 100m (Millennium) and 300m (McArthur River) spaced airborne gravity gradiometry and inversions
- 300m-spaced AEM survey and magnetic inversion, and AMT survey
- EM conductor traces; airborne electromagnetic surveys, 3D resistivity inversion, and 1D resistivity inversion of all survey lines
- ~1440 drill cores with lithologies, geochemistry (>47,000 analyses), SWIR, and structural data (12 with new lithogeochemistry, mineralogy, and petrophysics)
- 5 GPR lines and 74 till samples (geochemistry and pebble counts)
- **Surficial geochemistry** (~2140 soil horizons, ~580 tree cores, ~270 boulders)
- ~250 petrophysical measurements (saturated bulk density, porosity, magnetic susceptibility, resistivity, chargeability)

U Site Footprint Components

Wasyliuk et al. for Lesher et al. 2017 *Exploration* '17 *Volume*

Method	Indicator/Vector	Notes	Stratigraphic Unit	Distribution	Extent
Lithogeochem	molar Mg/K	indicative of clay mineralogy	MFa, MFc, MFd		up to 10 km
Lithogeochem	Mo-Co-Ga-Rb		MFa, MFb, MFc, MFd		<1 km
Lithogeochem	HREE-Y		MFa, MFb, MFc		1-2 km
Lithogeochem	LREE		MFb		<1 km
Lithogeochem	²⁰⁶ Pb/ ²⁰⁴ Pb, ²⁰⁷ Pb/ ²⁰⁶ Pb		MFa	possibly in fractures	<1 km
Machine Learning	High Th-Ba, low base metals		MFc	background?	>1 km
Machine Learning	High Zn-Mn-Ca		MFd		<1 km
Machine Learning	High LREE		MFb, MFc, MFd		<1 km
Machine Learning	High Ni-Co-V- Mo-Bi-B		MFc		<1 km
Machine Learning	late Carb, epigentic Chl		MFb		<1 km
Isotopes	high ²⁰⁶ Pb/ ²⁰⁴ Pb, low ²⁰⁷ Pb/ ²⁰⁶ Pb		MFa, MFb		>1 km
Geophysics	Seismic Q	anelastic attenuation factor		may detect alteration in sandstone in restricted survey	TBD

	► Mo-Co-Ga-Rb ▲ starts < 1 km	
	► IRFE <	
	→ HRFF-Y ◆ · · · · · · · · · · · · · · · · · ·	
MFD	Ba-Sr-P ◀	Up to 5 km
	Low Q, high attenuation <100 m	
	► Ma/K ◄	••••••••••••••••••••••••••••••••••••••
	► Mg/Al ◄	Up to 5 km
	Mo-Co-Ga-Rb ◀ <1 km	
	········► HREE-Y <	
MEa	······ ²⁰⁶ Pb/ ²⁰⁴ Pb- ²⁰⁷ Pb/ ²⁰⁶ Pb ◀······ <1 km	
IVII a	206Pb/204Pb-207Pb/206Pb ◀	Up to 5 km
	Bi-Co-Cu-Y-V-Ni ◀	Up to 5 km
	→ alkali deficient dravite-sudoite	Up to 5 km
	Low Q, high attenuation <100 m	
	Unconformity with u	<i>Ip to 70m or more displacement</i>
	McArthur River and Millennium	
	McArthur River only	Signals most pronounced along
Increasing concer	tration Millennium only	structures to surface and laterally
Ū		, ,
		Wasyliuk et al.
		for Lesher et al. 2017 Exploration
		in 2017 Exploration
canadaminin	Looper SEC 2019 Keystene Mineral Exploration Factorists Proje	
innovationcour	cil Lesner – SEG 2016 Reystone – Mineral Exploration Poolprints Proje	CRSNG

	B, dravite (sandstone clasts, various size fractions) ◀ Up to 5 km ²⁰⁷ Pb/ ²⁰⁶ Pb-U (tree cores, soil boulders) < 100 m
	→ Mg/K ← Up to 10 km
MFd	Mg/Al ◀ Up to 5 km Mo-Co-Ga-Rb ◀ <1 km ²⁰⁶ Pb/ ²⁰⁴ Pb- ²⁰⁷ Pb/ ²⁰⁶ Pb ◀ <1 km ↓ Ga-Cs ◀ Up to 5 km ↓ alkali deficient dravite-sudoite ◀ Up to 5 km ↓ High Th-Ba, low base metals ↓ <1 km
MFc	 Mg/K < Mg/Al < Mo-Co-Ga-Rb Mo-Co-Ga-Rb HREE-Y Ga-Cs < Up to 5 km Jalkali deficient dravite-sudoite Up to 5 km Up to 5 km Up to 5 km

Wasyliuk et al. for Lesher et al. 2017 *Exploration* '17 *Volume*

Cu Site Database and CEM

- 90m-resolution DEM and compilation of DDH overburden thickness
- HR orthophotography and regional/local geological maps including ~1640 outcrop/DDH stations, ~2350 bedding and structural measurements, ~750 mag sus measurements
- Compilation of Cu-Au-Ag-Zn-Pb mineral occurrences
- 250m-spacing airborne mag and radiometrics, and 2 km-spacing airborne gravity
- **3D compilation of chargeability/resistivity** (20 DCIP surveys ea. with 2D or 3D inversion)
- 2 ft-resolution satellite grav survey and 200-station ground grav survey
- ~1400 petrophysical (density/porosity/mag sus/remanence/electric) measurements
- ~1200 legacy and ~1200 new lithogeochemical, ~235 soil geochemical, and 125 biogeochemical (tree) analyses; ~250 whole-rock and ~180 soil pXRF analyses; ~3200 field and ~700 laboratory hyperspectral analyses
- 100 C-O, 70 S, 7 Cu, and 14 Rb-Sr, and Sm-Nd isotopic analyses; wide range of WD-XRES (EPMA) and LA-ICP-MS microanalyses of hornblende, plagioclase, epidote, biotite, chlorite, white mica, tourmaline, apatite, zircon, and oxides
- 380 pebble-mineral counts and geochemical analyses of till samples (80 with petrophysical measurements)

		0-0.5 km Mineralized	0-0.5 km Proximal	1.5-6 km Medial	3-15 km Distal	>15 km Fresh	Method(s)
Whole Rock	Cu-Ni-Au-Mo Fe-Mg-Zn-Pb ^{δ¹3} C	←					ICP-OES/FA ICP-OES CF-IRMS
White Mica	Abundance	<					Petrography
K-feldspar	Abundance	◀					Petrography/Staining
Sulfide	Abundance Bn-Ccp Py δ ³⁴ S	*	<				Petrography Petrography Petrography IRMS
Chlorite	Abundance				>		Petrography
Albite	Abundance			>			Petrography/Staining
Prehnite	Abundance						Petrography/SWIR
Carbonate	Abundance δ ¹³ C						Petrography CF-IRMS
Zircon	Eu/Eu* Ti-temp	<					LA-ICP-MS LA-ICP-MS
Petrophysics	Mag Susc						Susceptibility Meter

Cu Site Vectors

Lee et al. for

Schematic Cu Site Footprint

Common Footprints and Vectors I.

	Au	Cu	U
Structure			
Variance in bedding footprint	۲		۲
Vein/fracture density footprint		۲	۲
Petrophysics			
Mag Sus vector	۲	۲	
Resistivity and chargeability footprint	۲	۲	\bigcirc
Mineralogy			
Hydrothermal zircon footprint	۲	۲	
Silicification/desilicification vector	۲	۲	۲
Mineral Chemistry			
Epidote footprint	۲	۲	
Feldspar composition vector	۲	۲	
Ilmenite footprint	۲	۲	
Phyllosilicate (mica/chlorite/clay) compositional vector		۲	
Pyrite footprint			-
Sulfide chemistry footprint			
W in rutile footprint			

Common Footprints and Vectors II.

	Au	Cu	U
Lithogeochemistry			
Au footprint	۲	۲	McA only
B vector	\bigcirc	۲	۲
Ba-Sr vector	۲	۲	
C (carbonate/graphite)	۲	۲	۲
Cs-Rb-K vector	۲	۲	۲
Cu-Ag footprint	۲	۲	۲
LOI footprint	۲	۲	۲
REE vector	LREE	REE	۲
Mo ± Bi ± Pb footprint	۲	۲	۲
Ni-Zn vector		۲	۲
S footprint	۲	۲	۲
Selective leaching footprint	۲	۲	۲
U vector	۲		۲
Isotopes			
H-C-O isotope vector	۲	۲	\bigcirc
S isotope vector	۲	۲	\bigcirc
Pb isotope vector	\bigcirc	\bigcirc	۲
canadamining innovationcouncil Leshe	r – SEG 2018 Keystone – Mineral Exploration Fo	otprints Project	

NSERC CRSNG

Key Theme: Variance

- The variance of most parameters (structure, physical properties, mineralogy, mineral chemistry, lithogeochemistry, and isotopes) increases toward mineralization
- Ore zones are characterized by small-scale variations

canadamining

innovationcouncil

Highlights: Geophysics

- Image enhancement
- Physical property derivatives
- Q factor (anelastic attenuation) to define alteration

• Magnetics

- High-frequency anomalies (e.g., fault geometry, alteration)
- Derived signals from borehole navigation logs
- 3D inversions

- Electromagnetics
 - Surface mag sus from AEM
 - 3D multi-electrode BH resistivity and IP
 - Merged res and spectral IP
- Inversions
 - Constrained and joint inversions for overburden stripping
 - Open source code for multimodel inversions
 - Instrumental/model limitations (e.g., low Mag Sus contrasts)

Highlights: Petrophysics

- Physical properties aided geological correlation and alteration mapping
- IP responses of altered, mineralized, and barren lithologies
- Multiparameter magnetics to detect syn-mineralization pyrrhotite
- Inversion of WR geochemical data to derive physical properties
- Derived physical properties from 3D geophysical data

Highlights: Structural Geology

- Quantitative analysis of bedding attitudes to identify favourable structural domains
- Application of variograms to establish spatial continuity in structural analysis, petrophysics, and geochemistry

Highlights: Geochemistry

- Whole-Rock Geochemistry
 - **pXRF analysis** of outcrop and assay pulps
 - Molar element ratios eliminate closure issues
 - Variable leach techniques for mineral-specific geochemistry
 - Fluid pathways from fracture mineralogy and geochemistry
 - High-sensitivity, low-cost C, O, and Pb isotopic analysis
- Mineral Chemistry
 - Hyperspectral mapping of mine faces/samples/cores/surficial materials
 - Pathfinder models based on mineral-chemical data
 - Cluster analysis Rietveld XRD for alteration mapping
 - Modernization of field techniques (e.g., spectral analysis of stained core)

canadamining innovation

Highlights: Surficial

- Multi-media (soil, fractured rock, vegetation, etc.)
- Glacial stratigraphic controls on detrital minerals
- "Clean" silt and sand-sized till samples used for geochemical analysis
- Mineral-chemical signatures of heavy minerals (e.g., W in rutile)
- Hyperspectral analysis of glacial materials (e.g., phengitic mica)
- Supervised classification of radiometrics in surficial materials

Highlights: Data Integration

- QA/QC protocols
- Custom workflows for data integration
- Machine learning
 - Clustered heat maps
 - K-means clustering
 - Self-organizing maps
 - Hypercube
- Geoscience INTEGRATOR
- Common Earth Models

canadamining

innovation council

Highlights: Project Management

- First project of its kind in the minerals industry in Canada to involve so many researchers and industry partners
- New policies and workflows to facilitate collaboration across the various technological disciplines (more than Lithoprobe, Metal Earth, or most AMIRA projects) and across the different research sites
- May well be among the longest-lasting of the innovations resulting from the project

Actual Geology Imperfectly Sampled/Imaged at Large and Small Scales

Density,

Mag. EM. Multimedia.

Elements.

Optical.

Mapping

Project Closure and Data Release

- Preliminary Final Scientific Report submitted to Sponsors in Sept 2018
- "Glossy" Final Scientific Report and Final NSERC Report will be submitted in March 2019
- Project-generated data will be stored at the Mining Observatory Data Control Centre (MODCC) at the Sudbury Neutrino Observatory and will be available to the public in March 2019 – links will be provided on http://merc.laurentian.ca/footprints (alias cmic-footprints.ca)
- All project-generated data, metadata, and products will be provided in a Geoscience INTEGRATOR database, which can display data using the free Geoscience ANALYST 3D data visualizer and which can easily export data into other databases

